»

e

BT~ 77 COPY |
: R e AVF Control Numder: AVI-VSR-AFIOR-38-14

L0
LD
©
P
N
N
<<
)
<

Ada COMPILER
YALIDATION SUNMMARY REZPORT:
Certificate Number: 88i11Z3A1.10003
Alsys
AlsyCOMP_003, Version 4.1
Zenith Z-2ad

Complet:zon 2f On-Site Testing:
21 Novewber 1988

?repared By:
AFNOR
Tour Zurone
Cedex 7
F-92080 Par:s -a Defense

Prepared For:
Ada Joint Program Office
United States Department of Delfense
Washington DC 20301-3081

DTIC

: ELECTE
: MAY 17 1990

*B

Approved for public rcbau;
Dhnﬂbuﬁon Unnnﬂnd o

90 05 11 11




THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.




mAaY 15 "33 11:32 IIT RESEARCH [HST

P.B1
UNCLASSIFIED
“AECURTTY CLASSIFICATION OF TNIS PAGE (When Data Entered)
BEAD DNETRUCTIONS
REPORT DOCUMENTATION PAGE T oEE i e
1. REPORT NUMBLR 2. GOVY ACCESSION NO. 3. RECIPIENT'S CATALOG NUWBER
4. TITLE (8nd Subritie) S. TYPE OF REPORT & PERICD COVERED
Ada Compiler Validation Summary Report:ajgys 1 Nov. 1988 to 21 Nov. 1989
AlsyCOMP_003, Version 4.1, Zenith Z-248 (Host & Target), o PLRTORNING DRC. REPORT SWBLR
381121A1.10003 . ‘
7. AUTHOR) 8. COMTAACT OR GRANT NUMBER(S)
AFNOR, Paris, France.
0. PERSORMING OAGANIZATION ANO ADODRESS 10. PROGRAM ELEMINT. PRCJECT, TASK

ARLA 3 WUMR UN,! mumplhd

P4

AFNOR, Paris, France.

e

13. CONTROLLING OFFICE WAME AND AQORESS 12. REPORT DATE
Ada Jeoint Program Office

United States Department of Defense

I3, ¥
Washington, DC 20301-3081 T3, WORETRUT PAGLS
14. MONITOAING AGENCT WAMZ & ADDRLSS(H ckMerent from Controling Office) TS SECORITT CoASS 1ol thareporD

UNCLASSIFIEL

AFNOR, Paris, France, 15a. gegtsaﬁfxcnxomoon;usxus

16, DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMINT (of the abstractentered inBlock 20 f ditferent from Report)

UNCLASSIFIED

—

18. SUPPLEMENTARY NOTES

18. KEYWORDS (Continue on reverse side if necessery and identify by block numder)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO v

20. ABSTRALT (Continue on reverse ude if necessary and identify by block number)

Alsys, AlsyCdMP_003, Version 4.1, Paris La Defense, Zerith Z~-248 under MS/DOS, Version
3.2 (Host & Target), ACVC l.l10O.

DD U 1473 011108 OF 1 WOV 85 1S OBSOLETL

1340 $/8 0102-LF-014-8801 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGL (When Dsta Entered)

=, 1% 0g8p 11:24 ’ ] PAGE .00 1




Ada Compiler Validation Summary Report:

Compiler Name: AlsyCOMP_003, Version 4.1

Certificate Number: 881121A1.10003
Host: Zenith Z-248 under MS/DOS, Version 3.2
Target: Zenith Z-248 under MS/DOS, Version 3.2

Testing Completed 21 November 1988 Using ACVC 1.10

This report has been reviewed and is approved.

Tdle Labenefre

AFNOR

Dr Jacqueline Sidi

Tour Europe

Cedex 7

F-92080 Paris la Défense

oy

» MAda Validation Organization

V/A.V

Dr. John F.@Kramer
Institute for Defense Analyses
Alexandria va 22311

-2
/’//_;_ /q'/ :'?—\

Ada Joint Program Office
Dr. John Solomond
Director

Department of Defense
Washington DC 20301

il

INSPEUTYS

Accession Por

NTIS GRAAI & |

DTIC TAB 0
Unannounced 0
Justification |
By

Distribution/

Availability Codes

vail and/or
Dist Spsolal

'\,l




OFFICE OF THE DIRECTOR OF
DEFENSE RESEARCH AND ENGINEERING

WASHINGTON, BC 20301
¥ 0 ape w0y

MEMORANDUM FOR Director, Directorate of Database Services,
Defense Logistics Agency

SUBJECT: Technology 5cre§?rﬁ§/g} Unclassified/Unlimited Reports

Feb (3

Your letter of'2 February 1990 to the Commander, Air Force’
Systems Command, Air Force Beronautical Laboratory,
Wright-Patterson Air Force Base stated that the Ada Validation
Summary report for Meridian Software Systems, Inc. contained
technical data that should be denied publlc disclosure according to
DoD Directive 5230.25

We do not agree with this opinion that the contents of this
particular Ada Validation Summary Report or the contents of the
severzl hundred of such reports produced each year to document the
conformity testing results of Ada compilers. Ada is not usecd
exclusively for military applications. The language is an ANSI
Military Standard, a Federal Information Processing Standard, and
an International Standards Organization standard. Compilers are
tested for conformity to the standard as the basis for obtaining an
Ada Joint Program Office certificate of conformity. The results of
this testing are documented in a standard form in all Ada
Validation Summary Reports which the compiler vendor agrees to make
/publlc as part of his contract with the testing facility.

- On 18 December 1985, the Commerce Department issued Part

379 Technical Data of the Export Administration specmfically

listing Ada Programming Support Environments (including compilers)
as items controlled by the Commerce Department., The AJPO complies
with Department of Commerce export control’ regulations, When
Defense Technical Information Center receives an Ada Validation
Summary Report, which may be produced.by any of the five U.S. and
European Ada Validation Facilities, the ¢ontent should be made
available to the public.

If you have any further questions, please feel free to contgct
the undersigned at (202) 694-0209.

32ty (228l

John P. Solomond
Director
Ada Joint Program Office

P\
2




CHAPTEIR 1 INTRODUCTION
1.1 PURPOSE 97 THIS VALIDATION SUNMIARY REPORT
A USZ OF THIS VALIDATION 3UMMARY REPORT

RTIFIRENCES. .
1.4 DEFINITION OF TERMS

ACYC TEST CLASSES

M
. . e
[S Y SR VVRN 951

CHAPTER 2 CCNFIGURATION INFORMATION

CONFIGURATION TZI5TE e e e
I4PLEMENTATION CHARACTZIRISTICS.

CHAPTER 3 TEST INFORMATION

TEST RESULT e e e e e
SUMMARY OF TEST RESULTS BY CLASS.
SUMMARY OF TEST RESULTS BY CHAPTER.
WITHDRAWN TESTS . . . . . . .
INAPPLICABLE TESTS.

=1 Y O b W BN 2

Lo W o o o e o
. . P

APPEND:X A DECLARATION OF CONFORMANCE

APPENDIX B TEST PARAMETERS

APPENDIX C WITHDRAWN TEZSTS

APPENDIX D APPENDIX ¥ OF THE Ada STANDARD

.20
.20

TEST, PROCESSING, AND EVALUATIOL UCDIFICATIONS.
ADDITIONAL TZSTING INFORMATION.

7.1 Prevalidation . :

7.2 Test lethod

7.3 Test Site

. . o e .
~3 O Uy U

15
5
16
16
16

290

b

s od




INTRODUCTION

CHAPTER &

INTRODUCTION

Thls Valication Summary Report (VSR) descrinss the &xXtent to wnich a
specific Ada compiler conforms <to tas: Ada Standard, ANSI/¥IL-
STD~181i5A. This report =xpiains aili technica. terms ussd Within 1t
and thorough.y reports the resuits of testing fthis compiler using the
Ada Compiier va.:idation Capability (ACVC). an Ada compiler must be
impienented according to the Ada Standard., and any 1implementation-
dependent features zust conform to the requirements of the Ada
Standard. The Ada Standard must be 1implemsnted i1n 1Ts entirety, and
_ncthing can be 1mplemented that is not in the Standard.

Zyen though ail validated Ada compilers conform to the Ada Standard,

1% 2ust 2z understood thatr some differences do exilst between

irplementations. The Ada Standard »srmits  some 1mplerentaction
ependencies--for example, the maximum length of :identifiers or the
aximum va_ines of integer tydes. Other diffsrences bhetween compilers
resuit from the characteristics of particuiar opsrating systems,
nardware, or implementation stratagles. All the dependencies observed
éduring the process of testing this compiliér are Given in this report. |

e 0 - "‘/

7hae information in tars rsport 1s derived I[rom tThe test results
sroduced during vaiidation testing. The vailidation procass inciudes
sulmitiing a suite of standardized tests, the ACVYC, as inputs o an
Ada compiler and svaluating the resulis. The »nurpose of wvalidating is
tc ensure conformity of the compiler <o the Ada Standard 2y t=sting
that the ccopiler properiy 1mplements lsgal language constructs and
that 1t 1dentifies and rejects illegal language constructs. The
testing aisc identifies behavior that i1s innlementation-dependent but
nermitted »y the Ada Standard. Six classes of tests are used. These
-ests are designed to perform checks at compile time, at link =ime,
andé during exscution.

c
ol

Y o




INTRODUCTION

1.1 PURPOSZ OF THIS VALIDATION SUMNMARY RZIPORT
This Y3R cdocusm2nts tac resw.ts of rhe validation testing aserformed on
an Ada conpil=r. Testing was «carvried out for the following Durnosss:
. To attemptr to identify any _ancguage constIices swp901:ea oY
the compil_er that do not conforn o tae Ad2 Stancard
. To attenpt :o 1dentify any ranguage constructs not supportzd
Dy the compirlar but reguirag oy tas Ada Standard
. To determine that the implementat:zon-dependent Ddenavior 1is
llowed by the Ada Standar d
Tes” 1ﬂg of this compilar was conducted Dy under the direction of the
AVT a3ccording to procedures established oy the ada Jolnt Program
Off2ce and administerasd by the Acéa VYValidation Crganlzation {aV0).
O -site testing was completed 21 Hovember ‘303 at Alsys Inc. 1in
ltham, USA.
1.2 U3Z OF THIS LIDATION SUMMARY REPORT
Consistent with the national 1laws of the originating country, the AVO
nay maxe full and free public disc.osures of thls report. In tae
Un_:zd States, this 1s provided 1n accordance wita the "Freedom of
Information Act"(5 U.S.C.#552). The resuilits of this validation apply
only o The computers, oODsrating systems, and comdller versions

identifieé in this repor:.

The organizations r=presented on the signature pace of this report do
N0t revdresent or warrant that al. statements se&t forth 1n tais renort
are accurate and combiate, or tnat the subject compiler aas no
nonconformities to the Ada Standard otiher +than thoss »presented.

Copres of this report are

Ada Information Clearinghouse

Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern St

Washington DC 20301-3081

or from:
AFNOR
Tour Europe
cedex 7
F-92080 Paris la Défense

'1

ﬂ)

1‘1

availablie to the public from:




INTRODUCTZION

Quest:ons ragarding this report or the val:idation 7est resu.lis saou.d
be directed to the AVF listed above or to:

Ada Validation Organization

Institute for Dzfense Analivses

1307 North 3eaurmgard Stresr

texandria VA 223:ii

i. Reference Yanua. for the Ada Programming lLanguage, ANSI/

STD-1815A, Fedruary 1983, and ISO 3652-2.987.

2. Ada Compiier VYa.icdation Procedures and_Guxdelinss, Ada woint

3. Ada  Compiler Validation_ Canadi.:iiy ~-mpismentars' Guids,
SofTech, Inc., Decsmder 1986.

2.4 DEFINITION OF TERXS

ACYC The Ada Compiler Validation Capan:iiity. The set of
Ada programs that tests the conformity of an Ada
compiler to the Ada programmiang language.

Ada CTommentary An Ada Commentary contains ail information relevant
to the point acddressed 2y a comment on ths Ada
Standard. These corments are given a unigue
1dentification number having ths forn AI-ddddc.

Ada Srandard ANSI/H4IL-STD-1815A, February 1933 and ISO 3652-1987.

Appiicant The agency requesting validation.
AVE The Ada Validation Facility. The AVF 1s responsidle

for conducting conmpiler <validations according to
prccedures contained in the Ada Compiier Vaiidat:io
Procedures ané Guidelines.

AVO The Ada Validation Organiza%.on. The AVO has
oversight authority over a.l AYF practzcszs for the
nurpose of maintaining a uniform process for

valildation of Ada compilers. The AYO »nrovides
administrative ané technical support for Ada
validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of
this report, a comp.ler is any .anguage Dprocessor,




ZNTRODLCTION

including CrOoSsS-COnI_.= 5, rins.ators, ana
lnterpreters.

Falled Test An ACVC rtest for which tae genegratas A4
r2sult that demonsirates nouceoniormity To  the  Ada
Standard.

Host The computer on WllCLh ~l€ COosaDiler rasices.

Tnapp.icable test An ACYC test tl:at uses features of the language
that a compiler 1s not raqguirad tO support or may
legitimately supdort -n 31 way orther tiaan the2 one

expected by the test.

n ACYC <test for which 3 <oIpll=r ¢2n2raTes Toe
Xpectzd result.

[ 3

Target The computer for whicin a comdilzr generates cods.

Test A program that cChecfs 2 cowdilier's conforaiiy
regarding 2 parrticular featuss o©r a combinar:ion of
features = ¢ard. In = ais

o) A< context of ta:
report, :he te A singie test,
c

whicn may

Withdrawn Tist An ACVC zest found *o 2e incorrect and not uses to
. check conforzity to e A3 Standard. A test may o=
1NCOorrect »HaCanss 1T 1as an 1nvaLid Test oblective,
fails to meet 1Ts test objeciive, Or <ontains i.isgal.

or erroneous use 2f Thae language.

1.5 ACYC TZ3T CLASSES

Conformity to the Ada Standard 1s aneasured using -ae ACVC. The ACVC
contains both legal and 1llegal Ada programs structured 1nto six test
classes: A, B, C, D, E, and L. The first letter of a test name
1éentifies the class to which it belongs. Class A, C., D, and = tasts
are executapnle, and special program units are usad TO renort their
results during execution. Class 3 tests 2are expected to produce
compilation errors. Class L tests ars expected to »nroduce compilation
or link errors.

Class A tests checX that iega. Acda p»rograms can bde successfully
compiled and executed. There ars no explicit program components 1n a
Class A test %to check semantics. For example, a Class A test checks
that reserved words of another language (other than :thos2 a.rzady
reserved in the Ada language) are not treated as reserved words by an
Ada compiler. A Class A test 1is passed if no errors are detacted at
compiie time and the program executes to produce a PASSED ne-sage.




CUTRODUCTIO

taac

wn

Lf‘.uc&{-uu ancé Droduces z

r NHOT AFPLICABLZ ¢s8s33 e ndicatiag thz r=suilT waen

C_.3ss D Tests check the comp:ilation and eXe 2s 0of a
ompiler. SinCe there are no capac.Lty requirenents placz=¢d  oda a
comniler DY the Ada Standard for some »arvanmeters--for exampie, ths
aunoer of Ld ntifiers Dermitted 1n a compilation or the npumber of
units 1n 3 library--a compilizr nay rafuse o cozpile a £lass 3 test
and st:iil.de a conforming compiier. Therefors, 1f a Class D test

of tic compiler 1s =2Xceeded,

f£a1ls to compile because LDe canacity
the TzsT 1s classified as lnappl;cab-e. I a Class D test compilles

uccessfuilly, 1t 1i1s self-checking and produces a 2AS55ZD or FAILZD
nessags during =2xecution.

UA

Zach Class Z test 1s se.f-checking anc »roduces z NOT APPLICABLE,
PAS3ZD, or FAILZD nessage wiheén 1T 1S5 coxdil2d and =Xecutad. However,
T2e  Adz 3Standard pernits an  implementation  I& reiect  programs
containng some f{eaturss addrass=d dy Class I tests during
compi_ation. Therefore, a Class I test 1s »ass=z¢ HY a comdilar tf 1t

13 compiled successfully andé executes 1o »roducs 2 PASSID message, o
z eCcT=d DY tae comdi_er for an allowalnls r=ason.

Z.2s5 1 t2sTs checx thal lncomplete or :ille¢a. Aada IY2grams 1nvoLving
TUoTID:Z, Sejarataiy compiled units are det—ct:ﬁ and not allowed 10
=¥2Cut2. (Class . I2STS are CoOrdi.cd Sedarid nL £Xecution 1S
3tTempted. A Ciass L rtest passes =& 1t 1is X tiane--taat
15, an attenpt Lo eXecute the nain program aust generate an sarror
message before any declarations in tae tain »rogram or any units

referenced by the main progran are elaboragcu.

T#0 iibrary un:zis, the package REPORT and :he procedure CHECK_FILE,
support the self-checiing fsatures of the =2xecutable tests. The
package RIPORT o»rovides tne mechanism Dby which executable tests
rzport 2AS3ZID, FAILEZD, or NOT APPLICABLE results. It also »rovides a
set of 1dentity functions used to d<f2at some compiler oprinizations
a_.owed by the Ada Standard that would circumvent a test cbrective.
The procedur= CHICX_FILE 1s used to check the contents of text files
written by some of the Class C tests for caapter 14 of the Ada
Standard. The operation of REPORT and CHEZCK_FILZ 1s checked by a set
of executabla tests. These tests produce messages that are examined

h

i




CNTRCHUCTION

T2 veriivy o corrzcrn.y, Tf these units ars
N0t OrECRTLING ;7A_ldatlon I3 net atiemdied

Th- Text of follcW  TonTentions  That o ar:
intended 2 T2a$ONIILY H0rtad_e without
modiilcatio TE uSe ©f only The dasic set
ci 35 cha LT.r 3 n2Xiour o Zength of 72
J13raicTers N 2.ace fzatures that may nos

However, some

o
4"
“t
=
K
(8]
O 0
"~
1
a

TE&STS ConTAaln vailues Taat reduir: Thg TSt o custonizad accord:ing
O imp.emenrtation-specific values-—-for exams.e, an iL.iega. file nazxe.
A 213t of the values used for this wvalidation .s provided 1n Appencix
A COmDPLIEr MusT corractlv nrocess =ach of thz Zesis Ln the :
denonstrarte conformity To the Ada Standard by either meeiing tie
Ccrit tae  TesT  is

cza given for the test or gv sqowvnc That
it ] n

b zmentation 13 considered  Sach  time  {ae  1mpilementation 1S
val:laz=ad. A Test tha:t 1s inapplicab.e for one val:dation 1s not
necCcsssari.y 1nappiicabie for a subsequent val:idation. any test that
was determinea to contain an 1llsgal language construct or an
2rronsous language construct 1s withdrawn from the ACVC and,
D fore, 1s not used :in testing a compller. The tasts withdrawn at

1n2 of this vaiidation are given 1n Appendix D.




CONFIGURATION INTORMATION

CONFIGURATION INFORMATION

2.2 CCHTIGURATION TESTZID

The candidate compilation systex for this val:dazion was :ested under
the folicwing configuration:

Compiler: AZsyCOMP_O03, Version 4.
v
ACYVC Vers:on: 1.10
Certificate Humber: 38.121AL..0003
Host Computer: '
facaine: Zenith 2-2438

Operating System: %S/203
Version 3.2

Memory Size: 640 K of main memory
a:us 3 Mb of =2xXtené aemory

Configuration information :
30287 floating »oint Co-processor
46 4bh hard disk
ZGA color disniay and adapter

Target Computer:
Machine: Zenlth 2-248

Operating System: “3/208
Version 3.2

Memory Size: 640 K of main memory
oius 5 Mp of ext=nd memory
Configuration information :
30287 floating D»oOint CO-Processar
40 Mb hard disk
EGA color display and adapter

Communice tions Network: none

10




CONFIGURATION INTORMATION

2.2 IHPLIZMINTATION CHAR TRISTICS

One of the purposes of wvalidating conliiers i1s to detsyrmine the
schavior of a compiler in tnose areas of the Ada Standard that permit

i azzons to differ. Class D and % rtests specificaily check for
su i nentation cdifferences. However, ©esSts Ln OTher C1asS<¢S a.s50
charac ZZe an implementation. The tests dectonstrate the fworlowing
characteristics:

. Capacities.

The compiler correctly processcs a compi.atl
723 varilables 1n the same dec.arative Dar
D29002K.)

On containing
t. (See test

The compiler correctly process: a <Test containing 1loop
statements nested to 65 levels. (Sce tests D55K03A..H (8

tests).)

The compiler correctiy processes tests containing block
statements nested to 65 levels. (Sece test D56001B.

The compiler corvecily Drocesses T2StS CONLaining recursive
vrocedures separately comhiled as subuniis nested o 17
levels. (See tests D64005E..G (3 testsi.)

. Predefined tynes.

This 1adlementation  supporis  Tae  additiona:r predefined
types SHORT_TZNTEGER, LONG_IIiTZGZER, ZONG_FTLOAT 1n the
package STANDARD. (3ee tasts "B86001T..Z (7 tests).)

. Based literals.

An implementation 1s allowed raise S' {ERIC_ERROR or
CONSTRAINT_ERROR when a value exceeds SYSTEM.MAX_INT . This

implementation raises CONSTRAINT_ERRCR du ing exXecution.
(See test E24201A.)

. EXpression evaiuation.

Apparently no default initialization expressions for roocord
components are evaiuated before any wvaiue s checked to
belong to a component's subtype. {(See test C32117A.)
Assignments for subtypes are performed with <the same
precision as the base typ~. (Sce test C35712B.)

—
fo




COLFIGURATION INFORMATION

im plencw an.on uses no 2Xtra it
This 15Dlel@nTanion 1ses ail =xt
(See test C359C32.)

for =xtra precis:on.
ts for axtra range.

p arently NUMERIC_ZRROR 1s raised waen an intager .itera:
erand i1 a conDarison or ?e"be:shz Te¢sT s coutrside the
range of the base type. (Sex

in a fixead- vointT ConRarLso

the range of the Dasz tyde.

apnarcnk.y NUMZRIC ZRROR :

Apparent.y underf.ow 1s gracua..

Rounding.

The method used for rounding 7O integer 1s apparently round
to even. (See tests C46012A..Z.

Tae method used for rounding Lo longest 1integer s
apparentiy round to even. (See tests C46012A..Z.)

The method used for rounding to i1nteger in Statlc universal
real eXpressions 1S apparentiy round To e&ven. (Seg test
C4A014A.)

Array types.

An implementation s allowed T rarse DNUXERIC_ZRROR or
CoN TRAII _ERROR for an array aav H i
STANDARD.INTEIGZR'LAST and/or S
implementation:

Declaration of an array type or subtype declaration with
more than SYSTEM.¥AX_INT components raxses MNUMERIC_ZIRROR
sometimes, CONSTRAINT_ZRROR sometimes. (See test C36003A.)

CONSTRAINT_EZRROR Is raised when 'LENGTH 1s applied to an
array type with INTEGER'LAST + 2 components. (See test
C36202A.)

CONSTRAINT_ERROR 1s raised waen an array type with
SYSTEM.MAX_INT + 2 components s dec.ared. (See test
C36202B.)

A packed BOOLZAN array having a 'LENGTH exceeding
INTEGER'LAST raises no exception. (See test C52103X.)




CONTZGURATION ITHFZORMATION

A Dpacked two-dizmensional BOOLEZAN array wica .ore rthan
THTIGER'LAST components raises CONSTRAINT_IRROR when zhae
_engzh of a dimension 1S calculate¢ and  exceeds
INTEGER'LAST. array oblecCts are siiced. (See test C5210aY.)

A null array with one dimzans-on of lsngrh ygreater than
INTEGER'LAST may raise NUKIRIC_EZRROR or CONSTRAINT _ZRROR
ei1ther wpnen declared o: assignszd. Alteraativsly, an
1mplementation may accept the declaration. However, r2ngihs
must match in array siice assignments. This implementation
raises no exception. (Seca tast E52203Y.)

In assigning one-dimensiona. array :ty»es, the expression
appears to he gvaiuarac n 1ts antiraty sefore
CONSTRAINT _ERROR 1s raise&d when caecking whether the

1Nng e
expression’'s sultype 1s coapatible with the target's
subtype. (See test C520L3A.

In assigning two-dimensional array tywes, the <eXpression
does nor appear to »de evaluated in 1ts entirety osefore

NSTRAINT _ERROR Is raised w:xen checking whether the
cxpre551on S suosIype 1s compatible with the ctarget's
subtype. (See test C52013A.) ’

Jiscriminated types.

In assigning reccrd tyoes witn discriminants, the
a&Xpression anpears to de avaluwated 1n its entiraty before
CONSTRAINT_ZRROR 1s raised when checxing whethsr the
2Xpression’'s subtype 1s compatidie WwWith the target's
subtype. (See test C52013A.)

Aggregatsas.

In the evaluation of a multi-dimensionali aggregate, all
choices appear to be evaluared before checxing against the
1ndex type. (See tests C43207A and C43207B.)

In the evaluation of an aggregate contalning sudaggregates,
not all choices are avaluated bpefore »heing checxed for
identical bounds. (See test Z43212B.)

All choices are evaluated before CONSTRAINT _ZRROR 1s raised
1if a bound 1in a non-nuil range of a non-null aggregate does
not belong to an index subtype. (See test Z43211B.)




CONTIGURATION ZHFORMNATION

The pragma INLINE s sudporzed for functicns or »
out not functions ca:i.=¢ .nside a nackage sdacif:
E..7.)

AR

(See Tests _AJ004A..3, ZAalN0&C..D, ancd ¢

X
[¥5)
o
(o}
b
¢

Generics.

Generic specifications and Dpodiss can Dbe compiied in
separate compiiations. (See tests CAl012A, CA2009cC,
CAZ009F, BC3204C, and BC3205D.)

Generic unit »odies ané thelr subunits can be compi:ed in
separate compilations. (See test CA3CLIA.)

Generic subprogram deciarations and bodies can be compiied
in separate compilatiofns. (See tests CA1012A& and CAZ00SF.)

Generilc¢ library subprogram sdecifications andé sodies can se
compiled 1in separate comdilations. {See test CALOLI2A.)

Generic non-iibrary subprograw Dodies can be compiled 1in
separate compilations from their stubs. (Sce tesrt CA2009F.)
Generic paciage declarations and sodias can De compi.ed in
saparate conmpliations. (See =:tzsts CA2009C, 3C3202C, and
BC3205D.)

Generic lilbrary package specifications and 3>odies can De
complled in separate compi.ations. (Sce tasts 3C320«C and
BC3205D.)

Generic non-library package »odies as subunits can D>e
compiried in separate compi:ations. (See test CA2008C.)

Generic unit bodies and thelr subunits can be compiled in
separate compillations. (See test CA3011iA.)

Input and output.

The package SEQUENTIAL_IO can e 1nstantlated with
unconstrained array types anc record tynes with
discriminants without defaults. {See tests AE2101C,

£E2201iD, and £ZE2201E.)

The package DIRECT_IO «can not pe instantiated with
* unconstrained array types and record types with




CONFIGURATION IWTORMATION

s5C rl inants w;?hout defanlzs. (Sce tests aZ2101H,
2402 ancé $5220.6G.

o
try ¥

Modes IN_FILZ and QUT_TILZ are supdo:
but not CREIATE in modzs IN _TIL
CZ2.02N, and Cz21027.)

Hodes IN_FILZ, OUT_FILE, anc INOUT_FILI are supported for
DTREC’_IO, but not CRzATZ in mode IN_TILE. (See tests
CT2102F, €32102I..5, CZ2:02R, C321027, and C€zZ2102Vv.)

Modes IN_FILZI and OUT_FILZ are supported for text fil=zs,
2ut not CREATE 1in mode IN_FILE. (Ses tests CI3:023 and
C=3102I..K.)

t LZ oniy ind DELETE opgrations
SEQUENTIAL_IC. (3ee tests CZ2102G and

RESET except from IN_FILZ to INOUT_FILE or to QUT_FI
DELETE operations are supported for DIRICT_IO0. (See
CE2102K and CE2102Y.)

RESET and DELETZ operations are supp 1
(Sea tests CE3102F..G, TE3104C, C=3110A, anc CE3114A.

Overwriting to a sequentia. file truncates =to the last
element written. (See tast {22208B.)

Temporary sequential files are given names znd deisnad
when closed. (See tést C€Z2108A.)

Tenporary direct files are c¢iven namss and delsted when
closed. (See zest CE2108C.)

Temporary text files are given names and deieted when
closed. (See test CE3112A.)

More than one internal file can De associated Wwith each
external file for sequential fiies when reading oniy (See
tests CZ2107A..Z, CE2102L, CZ2110B, and CZ2:i11D.}

Yore than one internal file can be associated witih each
external file for direct files when reading only (See =ests
Z2107F..I, CE2110D and CE21ii:H.)

More than one internal file can »e associated with each

external file for text files when reading only. (See tests
CE3111A..E, CE3114B, and CE311l5A.) :

15




IST IUTORMATION

3.1 TEST RESULTS

Verszcon 1..0 of the ACVC comprises 37.7 tests. When this compiler was
tested, 36 tests nad been withdrawn Ddecause of tzst errors. The AVF
dererm-ned that 376 tests were inanhllcadle ©o 1TALS p-=zmentation.
ALl inappiicable tests were processed during validation testing
except for 20. =axecutable tests that use fioating-poxnt pracisien
exceeding rthat supported by the 1mp.enentat.on. Hocifications to the
cucde, processing, or grading for 32 <tests were requirad o
successfully demonstrate the tast objective. (See section 3.6.)

s
a

The AVY concliuces that the testiing r2suits cenonstrate acceptadie
conformity to the Ada Standard.

3.2 SUMMARY OF TZST RISULTS BY CLASS

RESULT TEZST CLASS TOTAL
"""""""" A3 c_ oz .
Passad 129 1232 1949 17 32 46 3305
Inapplicable e & 368 0 2 C 376
Withdrawn 1 2 33 0 0 0 36
TOTAL 130 1140 2350 17 34 46 3717

16




TEST INFORMATION

3.3 SUMMARY OF TIST REISULTS BY CHARPTIF

RZSULT ' CHAPTER TOTAL
2 3 . 5 6 7 3 2 f0 11 12 13 14

Inappl 24 72 :I5 0 0 0 5 i 4] 0 0 119 41 376
Wdrn 0 I G 0 0 0 0 Z 0 0 1 29 4 36
TOTAL 213 650 680 248 172 93 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The fo.:owing 36 tests were withdrawn from ACVC Version 1.10 at the
time of this validation:

A320056 B97102E 3C3009B CD2462D CD2A63a CD2A638 €22a63C
CD2A63D CD2R66A . CD2A668B CD2A66C CD2A66D  CD2A73A CD2A73B
CD2A73C CD2A73D CD2A76A  CD2AT68B CD2a76C CD2AT6D CD2A816
CD2AZ13G CD2A84N  CD2A84M  CD501:i0 €92B15C €37205¢C €D500738
CD720537 €D72038 272043 272052 CZ2107Z €z311ic CZ3301A
CE34il

See Appoendix D for the reason that =ach of thzs:c tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not anply to ali compilers because they maxe use of
features +that a compirler 1is not required >y the Ada Standard to
support. Others may depend on the result of another test that is
elther 1nappiicable or withdrawn. The appiicabilzity of a test to an
implementarion 1s considered each time a validation is attempted. A
test that is inapplicable for one vaiidation attempt 1s not
necessari.y 1napplicable for a subsequent attempt. For this
valicdation attempt, 376 tests were 1inapplicable for the reasons
indicated:

The following 201 tests are not apnlicable because they have
floating-point typ=s declarations requiring nore digits than
System.Max_Digits:

C24113L..Y (C35705L..Y (C35706L..Y (C35707L..Y (C35708L..Y

C35802L..2 C45241L..Y (C45321L..Y C45421L..Y C45521L..Z
C45524L..2 CA45621L..Z2 C45641L..Y C46Ci2L..Z

17




TIST INIZORMATION

\.J

357024 and 3860017 are noT anp.icanle her:use Thls
pleventatlon sudzorts no predefined tynrs Short_Float,

L;..? ta tests) and C=3332M..7 (< tes
1 the va_ue of System.Xax_Mantissa I

)

™o
L=
e

OUI

o

oo

C36001F, ==s not app..cable hecause recompilation of 2ackage
SYSTEM i1s not aliowec.

3500.X%, C”'“’l), ana CDT.0.G are not app.icabig because tais
plementation does not supvort any predef:ined 1ntegc* tyse with
name othe ghan integer, Long_Integer, or Short_Integer.

386001Y 1s not appiilcable hecauss Tthls impiementation suppores
no predefined fixed-point type other than Duration

B8606GLZ 1is not applicable Ddecause rthis 1mplem=2ntation supports

no predefinsd floaring-point type with a name other than Flwoat,
Long_Fioat, or Short_Float.

B91001H is not appliicable bhecause zacddress clausa for entries 1is
not supported by this implementation.

CD1009C, CD2A41A..B, CD2A4iE, CD2A4Z2A..3, CD2A42E..7, CD2adiI..J
are not appilcable because size c.ause on float 1s not supported
by this implementation.

ares nog applican.e because
‘ed records or derived tasks 1s not
ion.

reprasentation ciause on

CDiC04aB, CD"CO4E, CD4051A
ger
supported by this lmplemental

<t l»-‘o

CD1C03C, CD2A83A..C, (CD2A83Z, (CD2A82B..I, ©D2A8<4..., CD2B.1B
ar< not appricabie necause sTOrag: sizz clause on co..sction of
unconstrained o0dlect 15 not supportad.

CD1CO4A, CD2A2.C..D, CD2A22C. .0, CDZA22G..H, CD2A3LC..D,
CD2A32C..D, CD2A32G..H, CD2A41C..D, CD2A42C..D, (CD2A42G..H,
CD2A51C..D, CD2aA52C..D, CD2A52G. .4, CD2A53D, CD2A54D,
CD2A54d are not applicable because size clause for derived
private type 1s not supported by this implementation.

CD2A61A..D,F,H,I,J,%,., CD2A62A..C, CD2ATIA..D, CD2A72A..D,
CD2A74A..D, CD2AT5A..D are not applicasle because of the way
this mplementation ailiocates storags space for one component,
size specification clause for an array type or for a record type
requires compression of the storage space needed for all the
components (without gaps).

CD4041A 1is not applicable because alignment "at mod 8" 1s not
supported by this implementation.

18




'

v

BD5006D is not applicable because address clause for pack

ncT suprported by this impiementation.

€>50::18,2,7.H,L,N,R, €d5012C. 2,64, 4,

CD5014U,¥W are not avniicanie Dbecause address

25003 1S not appricasie decause acdress
ariable 1s not supported Jy thls 1mplementat:ion.

TZST

clause for

IMTORXA

TION

integer

fages is

¢»50138,D,7,4,L,Y,R,

constant 1s not supnorted by thais imp.ementation.

€D50:3K 1is not appiicadie because addéress clause for

of 3 record type 1s not supported by this

clause for a

variables
imniementation.

250125, (CD50138, (CD5014S are not appylicanle DHecause adcress
clause for a2 task 1s not supported Dy this impismrentation.
C3Z2202%T 13 <inappi:cable because rthis implementation supports
create with out_file mode for SZQUINTIAL_ZIC.

CZ2I027 is 1inapplic ble because TS 1mpiereantation Sup oOrts
create with inout_fiie mode for DIRECT_IO.

CZ2102J 1s 1inapplicable because this .Ip.2méntation sudpores

create with out_fiie mode for DIRICT_IO.

CZ2102M 1is inavpiicadie Hecause ©tiis 1implementation

open with in_file mode for SEQUENTIAL_IO.

CZ21020 1s 1inapplicable because this 1implementation

RESZT with in_£file mode for SEQUENTIAL_IG.

CZ2102P 1s 1inapplicable »Hecause <this impilementation

open with out_file mode for SZQUENTIAL_IO.

CZ2202Q 1s 1napplicabie because this

impl

RESET with out_file mode for SZQUENTIAL_IO.

smentation

CZ22102R 1is 1inapplicable because <this impliementation

open with inout_file mode for DIRECT_IO.

CE2102 is inapplicable because this implementation
RESET w1th 1nout_file moce for DIREZCT_IO.
221027 is 1inapplicable because tals impiementation

open with in_file mode for DIRECT_IO.

CZ2102U 1is 1inapoliicable because this implementation

RESZT with in_file mode for DIRECT_IO.

19

supports

supports

supports

supports

Suppors:s

supports




TZST INTORIUATION

CIZi0CY s inandlicasie e 215 1mplementation supdorcs

open with ouz _fil

~ATNC e AS

CZOLO0LV s 1nEnniicadnle, decause This  l1EDlemSNTETIOon  SUDDOTTS

RESZIT wita out_file wmoce for DIRECT_IO.

CZ2105A 1s not applicaaie Ddscause create with node pn_file :s
nOT supnorted by this imdlementation for SEQUIUTIAL _IO0.

CZ21058 1s znappiicable because CRIATZI wxth IN_FILZ mode 1s not
supported for direct access files.

222078..% (4 tests), CZ2107L, and CEZ2Z.10B are not applicable
Decause muitipie internal files cannot be associated with the
same eXternal file when one or more files 1s writing for
sequential filzs. The Droper exceprion s rvaised when zuliidie
access 1s attempted. '

St

C32107G..H (2 tests). CZ2:110D, and CZ21:ilH ars not applicapnle
because fqulitipie internai f:les cannot De assoc:iated with the
same =2xternal file when one or zors files 1s writing for diresct
fiiles. The prowver exception 1s raisced wWaen nultiple access :is

attenneed.

CZ2111C,D are no:t app.icalrle bpecaus: resciing from in _£:1:

out_file anode for sequential frles s ot sudported Iy

et O

(8]
S

oo

a

£Z24010 and EZ240LG are 1ot ajpiicalrie DHecause USE_ZRROR 1s

rarsed wien <tag crealz2 of an instart.-ti:y of DIRECT_IO
vith uncunsivain=q4 type is called.

CZ2401H 1s not appiicanie hecause create with zaout_fle n1ode

for unconstrained records with defauit discriminagnts 1s not

supported by this implementation.

CZ3102F 1is 1inapplicable Dbhecause this implementation supports
reset for text files, for out_file, 1n_file and from out_file to
in_file mode.

CE3102G 1s 1inapplicable because rhis implementation supports
deletion of an external filie for text files.

CE3.02I :5s 1inapplicable because this 1implementation supports
create with out_file mode for text files.

CE31020 1s 1inapplicable because <tThils 1mplementat.on supports
open with in_file mode for text files.

20




TZST INITORMATION

CZ3:02K 1s  1n&ppiicadié Decalse {oaI5 lMDPieMENTATION  SULNOYIS

open wiza out_tile mode for

CT3:09A 1s inajplicadble secause Text frl=2 create with in_filz
mode 18 neT sundoritel and ra:ises USE_ZRROR.

231118, CEZ31I1.2..Z (2 tests), <CI3Ll43, and CI3i113A are rno
avnlicansle 22cause muitioslz internal I{:l1:s cannot De assocuatz
with the same externa. file wiaen one or sore files 1s wriio
for text filzs. The Droper <oXCedhtioR 15 railsed waen mu.Ltiple
access 1s attempted.

3.5 TEZIST, PROCZSSING, AND ZVALUATION MODIFICATIONS

It s exXpected that some tests will require zmodifications of coce,
nrocassing, o©r &valuarion in order to compensate for legitimate
1mplenantation sehavior. Modifications are nade by the AVF 1in cases
where legitimate 1implementation Dehavior D»revents fthe successiul
conpletion of an (otherwise) appiicanle Trest. Ixanmpies of such
rodifications :nclude: adding a length clause to alter the defau:t
size of a collection; spi:itting a Cilass B t2St 1nto sudbtests so that
ail errors are detected; and confirming :hat msssages procduced by an
2Xecutable test demonstrate conforming behavior  that  wasn't
anticipated 2y the test (such as raising ons exception instead of
anotner).

Modifications were raquirzd for 51 tasts.

The %est ZA3004D when xrun as it 1S, The 1np.ementatzon fails o
detect an erzor on Line 27 of test
T

-n eajf0ad*x"). This 1s hecause

fl<c ZA3002D6 (line 115 of '"ca:
=2 aragma “WLINE has no effect when
1ts object 1s within a package spec.f.cation. However, tne resu.:s of
running tae test as 1t :s does not confir: that the pragra had no
effect, only that the package was not =»ade odsoiete. By re-orcdering
The compiiations so that the two subvrograns are compiled after file
D5 (tne re-compilation of the "with"ed pacxage that makes the various
2ari-er units obsolete), we create a test that shows that 1indead
pragma INLINZ has no effect when awnplied (o a sudprogram that s
cailed within a package specification: the test then executes and
produces the expected NOT_APPLICABLE result {(as though INLINE were
not supnorted at ail). The re-ordering of EA3004D test files 1is
N-1~4-3-2-3-6.
»

The foilowing 30 tests were split Dbecause syntax errors at one point
resuited 1n the compiler not detecting other errors in the test:

B23004A B24007A B24009A B250024 B26005A B27005A B28003A
B32202A B32202B B32202C B33001A B36307A B37004A B49003A
349005A B61012A B62001B B743043B B74304C B74401F B74401K
B91004A B95032A B95069A B95069B BA1101B2 BA1iQiB4 BC2001D




TE3T THFORMATION

w
(]
[}
(@}
<o
(V)
Je
w
)
[oW)
O
[}
(¥el
Oy
w
L
(¢1)
)
()
"1
w

The foll0Wing 2.1 TEStSs Wers S5L.LT 1D oOrder to show tnaf the compilier
X o The repdresentaiion c.ause inaicated Dy the comment

CD2A6La CDJZAH1B CDZA6LT ChZAciZ CDZABLS CD2A62ZA C223623
CD2ATIA C32ZA7L3 CJ2ATZ2A CD2AT723 CD2AT5A CDZA753 C32A3%=B
CDlAas=C CO2a84D CD2A84z CDZA8aT CD2A8+G CD2A8:d CD2Asal

3.7 ADDITIONAL TEISTING ZIUFORMIATION

3.7.2 Prevalication
Prror to va.idation, a set of test r=2sults for ACYVC Version 1.10
procducad 2y Tie AisyCOMP_003 was sudmitted o the AVT Dby the

app.:cant for review. Analysis of thess resul_is demonstrated thar T
comdi_er succzssfully pnassed a.i appolcainie tests, and the compiler
axdioited the expected Lehavior on a.. lnapp.icasie tests.

3.7.2 Test Method

Testing of th= AlsyCO¥P_0C3 using ACYC Version ...0 was c¢oncducted
an-site by a validation tean from the AVF. The configurarion
consisted of th Z-2438 operaring nncer 5/008, VYarsion 3.2.

Y
3
a
s
[ el

contalning all tesTs was taxsn on-s.t2 5Y Tie val
ocessing. Tests that make use of 1aplementarion-spec
ustonized Dy Alsys after loading of the taje.

§ h 3w

T O

LAl e |
Ko}

o TLa BT

The contents of the tape were not loaded directiy onto the 2aost
computer. They were loaded on a VAX/VH¥S macnine ané transfarred via a
networx to the Zenith 2-248. Thais 1s the reason why prevaiidation
tests were us=2d for the the validation. Those tests wer2 loaded dy
Alsys from a magnetic tape containing ai. tests provided dy the AVT.
Customizactzon was done by Alsys. Al. e tests were checxed at
prevalidation tirne.

Inte¢rity of the wvaiidation tests was nade Dy CclscZing hat no
modificatzon of the test occured after <he Tide tne Dreval-dation
results werae transferred on cdisquettes for sudmission to the AVE.
This check was performed by verifying that tie date of creation {or
iast  aod:ification) of the test files was eariier than :iae
prevaiidat:on date. Aafter validatiun was performed, 30 source :ests
were seiected by the AVF and checked for integrity.




ANG AL. =XEcutadlie 1=STs

rint=¢C from the froin The

; SCYL3Is Ddrovid=ad 2Y ALsys and
reviewesd 2y Tas validation Twean. Tae comoller Yas tesred using all
defau.t od-icn settings except for the folilowing:

Tl TOmDLLIRY WAS TaSTed USLNG Dol

1

OBTION / SWITCH EFFICT
GIHZRIC=3TUBS Code of g¢gensvic instantration 1s niaced 1in separats

o]
n

=
Mq

[

s
3 The »ragma INLIIT are td4en 1nto accouant

Tests wWere compiled, 1inXed, and =2Xecuted (is aporopriats) using 2
cosputers.  T=st output, coxpilation lisiings, and Job logs were
captursd¢ on clsguettes and arcnivad 2T the AYT. The listings exanmined
On-site by the validation tean were a.so Arcniwid

AT ALsYs, Inc. in ¥altha.s, USA and was compietad




JICLARATION OF CONFGRIANCE

APPINCIX A
JICLARATION OF CONTORLAWCE

Alsys has sudmitted the following Jeclaration of
=z a0,

Conformance CONC<YNing She ALsSYCol?

24




DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE
Compiler Implementor: Alsys

Ada Validation Facility: AFNOR, Tour Europe Cedex 7,
F-32080 Paris la Défense

Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: AlsyCOMP_003 Version 4.1
Host Architecture ISA: Zenith Z-248

OS&VER #: MS/DOS, Version 3.2
Target Architecture ISA: Zenith Z-248

QS&VER #: : MS/DOS, Version 3.2

Implementor's Declaration

I, the undersigned, representing Alsys, have implemented no deliberate
extensions to the Ada Language Standard ANSI/MIL-STD-1815A in the
compiler(s) listed in this declaration. I declare that Alsys 1s the
owner of record of the Ada language compiler(s) listed above and., as
such, is responsible for maintaining said compiler(s) in conformance
to ANSI/MIL-STD-1815A. All certificates and registrations for Ada
language compiler(s) listed in this declaration shall be made only in
the owner's corporate name.

\' .

L P Date
Alsys
Mike Blanchette
Vice President and Director of Engineering

A6 AS




DECLARATION OF CONFORMANCE

Owner's Declaration

I, the undersigned, representing Alsys, take full responsibility for
implementation and maintenance of the Ada compiler(s) listed above,
and agree to the public disclosure of the final Validation Summary
Report. I further agree to continue to comply with the Ada trademark
policy, as defined by the Ada Joint Program Office. I declare that all
of the Ada 1language <compilers listed, and their host/target
performance, are 1in compliance with the Ada Language Standard
ANSI/MIL-STD-1815A.

» - . S

Alsys
Mike Blanchette
Vice President and Director of Engineering

Datc




Cerzain tests

sucn 4s the aaximua .sungta of an
{est taat nakes use of such

zn its f:ile nmane. Actual vaiues

vaiu=ss 1s identified 2y the

0 tae ACVC maze use of i1apr2mentation-denendent vaiues

1’
names. A
zxtension .7TST
represented dy

tine andé invalid file

znpur

TO0 pe sudsiiiuted arce

nares that Ddegln witih & doliar sign. A vaiue nust 2& substituted for
each of these names nefore the tast 1s run. The va.ues used for tnis
validarion are given below.

Hame and ¥e¢aning Vaiue

SACC_SIZE 32

An 1nteger literal whose value

is the number of bits sufficient

to hold any vaiue of an access

type.

3BIG_IDi {254 * "A") & 'l7

Identifzcr the size of the

mMaxIoum input iine Iengta

with varylng i1ast character.
3BIG_ID2 (254 * "A) « '3

Identificr tane size of the

maxXigaum indut line langtn

wlTh varying -ast cnaracter.
$BIG_Iu3 (126 =~ "A’") & '3' & (128 * 'A")
Identifier the size of the

raximum input 1llne length

wlth varying middie character.
$B1G_ID4a (126 = 'A") & '4' & (128 * 'A"}

Identifier the size of the
maximum inpui 11ne length
with varying middle character.

27




Hame and HMeaning

33IG_INT_LIT
AN inteager iiteral of vaiue
233 with enough leading zeroes
SO that 1t 1s the size of the
TEX1rnUur Zine length.

A universal real literal of
va_ue $90.0 with enough
~2acding zeroes to be the size
of the maximum line lengtih.

SBIG_STRINGL

A string l.teral wnich when
catenated with BIG_STRING2
yie.Cds the image of BIG_IDL.

33IG_STRING2

A string litera. which when
catenated to the end of
BIG_STRING1L y:1=lds the image
of BIG_ID1.

3BLANXS

A sequence of blanks twenty
characters 12ss taan the size
of the maximum line length.

SCOUNT_LAST

A universal 1nteger literal whose

7aiue 1s TEXT_ZIO0.COUNT'LAST.

SDEFAULT_MEX_SIZE

An 1nteger literai whose va.ue

1s SYSTEM.MEMORY_SIZE.

SDEZFAULT_STOR_UNIT
An integer literal whose value
1s SYSTEZM.STORAGE UNIT.

SDEFAULT_SYS_NAXZ
The value of the constant
SYSTEM.SYSTEM_[IAME.

$SDELTA_DOC
A real literal whose value 1s
SYSTEM.FINE_DELTA.

TIST PARAHETZERS

(250 = '0') & '690.0°

[RTI} & (:27* IAI) & [T

M & (127 < TAT) & LMY

214733647

655360

I_80X86

28




jiane ancé Meaning Va,nusz

SFIZLD_LAST 255

A universal integer literal whose

value 13 TEXT_IO.FIELD'LAST
SFIXED_NAME NO_SUCH_FIXID_TYPE
The name of 3 nredefined

fixed-point type other taan

DURATION.
STLOAT_NAHMZ O _SUCHE_TYPZ

The name of a nredefined
floaczng-point type other
FLOAT, SHORT_FLOAT, or
LONG_TLOAT

than

SGRZATZIR _THAN_DURATION
A universai real l:iteral tha

_.3s between DURAT:ON'BASZ'LAS?

and DURATION'LAST or any
in the range of DURATION.

value

SGREZATER_THAN_DURATION_BASZ_LAST
A unilversa:l real Literal
greatzr than DURATION'BASE'LAST.

SAZGH_PRIORITY

An integer iiteral whose
1s the upder dound of thz
for

N
Va.ile

rangza

-y - -y -

ILLZGAL_EXTERNAL _FILE_NAMEL
An z2xternal file name which
contains invalid characters.

SILLEGAL_EXTERNAL_FILE_NAME2
An external file name which
1s too long.

SIUTZGER_FIRST
A universal integer literal
whose vaiue i1s INTEGEZR'FIRST.

SINTEGZR_LAST
A universal integer iiteral
whose value 1s INTEGER'LAST.

that :s

the subtype SYSTEZM.PRIORITY.

2_097 _151.999_023_437_31

3_000_000.0

:0

ILLEGALNISY &*{}/ _+~

ES% &% () ?/) (*&\!S5%’

-32768

32767




A universa:
Wwa0sSe va.le 1is

SLESS_THAN _DURATION
A universal reai literail
11es between JURATION'BAS

L

Tha
ot
2

IRST

and DURATION'FIRST or any vaiue

in the range of DURATICY.

SLESS_THAN_DURATION_BASE_FIRST

A universal real literal

less than DURATION'BASE’'FIRST.

SLOW_PRIORITY

An 1integer literal whose value

that

1s

1s the lower bound of the range

for the subtype SYSTEM.PRIORIT

$SMANTISSA_DOC

An integer literal whose value

1s SYSTEM.MAX_MANTISSA.
SHAX_DIGIT

Maximus digits supported
ficating-point types.

SMAX_IN_LzH

Maximum input iine leng:in

persitted by the impiementation.

SMAX INT
A universal
whose value

integer

.=
+0

SMAX_INT PLUS_:

iilterai
SYST=M.4AX_INT.

A universal integer literal

whose value 1s SYSTEM.MAX_INT+

SMAX_LEN_INT_BASED_LITERAL
A universal 1nteger based
iiteral whose value 1s 2%

il

with enough leading zeroces :n
the mantissa to be MAX_IN_LEN

long.

«
L.

TIST
Value
wes
-2_097_:52.5
-3000_000.0
3z
15
253
2147483647
2147483648
"42:"' & (250 * 'Q') & '1il:

30

LTt

R

PARANETS

RS




Mare and Meaning

Sar

$UAY TN

zeroe

YAX_IN_L

characters.

SHIN_INT

A UL1versal 1nteger litera:
whose value 1s SYSTIM.MIU_INT.
SMIN_TASK_SIZ=

An integer litera. whose va.ue
1s the number of bhits requirad
To 101G a task oblect which has
no entries, no declarations, and

HWULL:;" as the only statement In
1ts body.

SHANZ

A nare of a predefined numer:ic
type other taan FLOAT, INTEGZR,
SHORT_FLOAT, SHORT_INTEGER,
LONG_TLOAT, or LONG_INTIGER.
SNAXE_LIST

A I:ist of enumeration literails

1n the ty»e SYSTEN.NAX
separated by commas.

SNZG_BASED_INT

A based integer literal whose
nighest order nonzero bit falls
in the sign bit position of the
representation for SYSTEM.MAX_INT
SNEW_MEM_SIZE

An 1nteger l:iteral whose vaiue
1s a vermitted argument for
pragma memory_size, other than
DEFAULT_MEM_SIZE. If there 1is
no other value, then use
DEFAULT_MEM_SIZE.

Vaiue2

"oyt & (244 * '0') & 'FLEL
TR (253 x AT &

-2227<82%648

32

HO_SUCH_TYPE

I_80X36

655360

31




daze and Xeaning Yazue
SNEZV_STOR_UNIT g

Al 1n%teger literal whose value

1s a peruztted argument for

pragna storage_unit, other than
DEFAULT_STOR_UNIT. If there 1s

no other permitted value, then

use value of SYSTEM.STORAGZ_UNIT.

SNIW_SYS_NAME I_80X86
A 7alue of the type SYSTEZX.NAME
otlher than SDEFAULT_SYS_NAXE. I
there 1s only one value of that
tyve, then usz that vaiue.

f

3TASK_SIZZ 32

An 1nteger literal whose value

1is the numder of bits required

to hoié a task opject whicn has

4 Singie 2niry with one inout

parameter.

T.CX 2.0/18.2

A real litera: whose value 1is
SYSTEX.TICK.

L sas e a4 o

32




WITHDORAWIN TIZSTS

are withndrawn from the ACYC because taey d¢o not conforn to

the Ada Stanczrd. The following 36 tTests had »heen witadrawn at tae

Time of

4330056

B97102E

BC30093

CD2A38LG,

va.rzdation testing for the reasons indicated. A reterencs of

..D, :COZA66A..D, CDIAT3IA..D, CD2ATEA..D |
e

This test unreasonably exn<CtS a component clause toO
pack an array component into a minimum size (line 30).

Tais test contains an unitsnded i1llegal
statement contalns a nul. statesent art
selective wait aliternative (line 31j.

This *test wreongly expects that c:rcular instantiations
W1l. De detectsd in severali compllation units 2ve

though none of the units 1s 1liegal with respect o tThe
units 1t depends on; >y A:1-00256, the 1llegality need
not be< detscted until executlon is acttampted (line 9%).

This test wrongly reqguires thal an array object's siz
D2 no greater than 10 zl-hough 1ts subitype's slze was
specif:ied to be 40 (iine 137;.

16 tests] These tests
TONgLy attenmpt to check tdle size of objects of a
derivse iyné {(for wazch a 'SIZE length clause is given)
by passing  them to a derived subprogram (which
impiscitly converts them to the parent type (Ada
standard 3.4:1.4)). Additionaily, they use the 'SIZE
zength clause and attridbute, whose interpretation 1s
considered problematic by the WG9 ARG.

CD2A83G, CD2A84N & M, & CD50110 These tests assume that

dependent tasks will terminate while the main »rogranm
executes a loop that simply tests for tasx terminat-on;
this 1s not the case, and the main program may loop
indefinitely (lines 74, 85, 86 & 96, 36 & 96, and 58,
resp.).

CDZB15C & CD7205C These tests expect that a 'STORAGE_SIZZI length

clause provides precise control over the number of
designated objects 1n a collection; the Ada standard
13.2:15 alliows that such control must not be expected.

33




WiITHIRAWN TESTS

(@]
U
w
(@]
O
~2
W
H
-
M
ct
iy
n
-t
E3)
T
o]
e
[T
]
=
a
>
J
(i

TS an iapLiCift.y  G=ciarsd
“har -s

¢
1Cress saatl 1S $Dec.ilod for a
}

C37.0%A This Test reguires taart SuCCessive Cal_s e}
CALEZNDAR.CLOCK change Dy at least SYSTEIM.TICK; nowever,
by Coxmentary 32—00201, 1t 13 on:y Tae expects

frequency of chang¢: that must 2=z at Least SYSTIM.TICK--
narticuar instances of changs ray s= less (_zne 29).

£272033, & (CD7C04B These (=zstis use zhe SZZEZ iengta clause and

attridbute, whose internratation is considered
probiexatic 2y The WGI ARG.
CD7.05D This test checks an inval:z< st odIecIive: 1T tr

activation as taoucn 1t wers 1iXe the syecificatio
storage for a collection.

-
the specification of storage to e sescerved for a tasi
on

£2107:2 This test r&quires that objlects of two similar scalar
types be distinguished when read from 3 file--DATA_ERROR
1s expected to be ralsed 2y an attempt to read one
object as of the other type. However, 1t 1s not clear
2Xactiy now Tthe Ada standard .4.2.4:4 s to e
interpreted; thus, this test objective i1s not considerad
valid. (iine 90).

CIZiillc This test requlres certain bdehavior, wnen two files are
associated with <the sanm chcfna- fzle, taat 1is not

ame
required Oy tae Ada standar

IND_OF_LINT &
hese Cal.s were
intended to specify a iie, not rzfer to
STANDARD_INPUT (lines 103, 107, 118, 132, & 136).

CE330la This Test c¢ontains savera. ©a..s 0
END_OF _PAGZ that have no Dparametar: T

CZ3411B This test requires that a text file's column number be
set to COUNT'LAST in order to check that LAYOUT_EZRROR 1is
raised >y a subsequent PUT operation. But the former
operation wlll generaily raise an <excepi-on due to a
iack of availanie disx space, and the test wouid thus
encumber validat:on testing.




T allowszd topLementartion denend2ncics corresnond o
i ation-depandens Dragmas, o) cerrain raca.ne-dependent
C tons as mentioned in chapter 13 of rtae Ada Standard, andéd to
ce )

airiowed restrictions on représenratlon clauses. The
+

impienentation-dependent characteristics of the A:syCONMP_003, Version
4.1, are described in the following sections, whlch CG1SCUSS tepidls 1n
Appendix T of the Ada Standard. -mpiementation-si2cif:ic portions of

ackage STANDARD are aiso inciudsd in tais anpendix.

[}
o)
(7]
'J (=4

type _IUTIGZIR is range -32_783 .. 52_787;

type SHORT_INTEGER is range -128 .. .27;

type LONG _INTIGIR is range -2_1<7_483_628 .. 2_147_433_637;

FLOAT 1s digits 6 range

e
$1.121 1111 13111 1111 _1lii lili#Z-l27

e aaa v 111 1 g taa aaiamm_ 1R,
282,122 111l Cild s+l .l Lia_ il L’L47,

1Ll 3iTI GILI Lill ITIlo4Iii_Illi_illl_tiii#E1023
2$1.11311 5131 11132111 1121 2311 12131 1513 1311 1131131711 1111_1111481023;

type DURATION is delta 0.001 rang= -2007157.5 +2067152.0;

end STANDARD;




Copyright 1988 by Alsys

All rights reserved. No part of this document may be reproduced in
any form or by any means without permission in writing from Alsys.

Printed: November 1988

Alsys reserves the right to make changes in specifications and other information
contained in this publication without prior notice. Consult Alsys to determine whether
such changes have been made.

Alsys, AdaWorld AdaProbe, AdaXref, AdaReformat, and AdaMake are registered trademarks of Alsys.
Microsoft, MS-DOS and MS are registered trademarks of Microsoft Corporation.

IBM, PC AT and PC-DOS are registered trademarks of International Business Machines Corporation.
INTEL is a registered trademark of Intel Corporation.




TABLE OF CONTENTS

APPENDIX F
1 Implementation-Dependent Pragmas
1.1 INLINE
1.2 INTERFACE
1.3 INTERFACE_NAME
14 INDENT
1.5 Other Pragmas
2 Implementation-Dependent Attributes
3 Specification of the package SYSTEM
4 Restrictions on Representation Clauses
4.1 Enumeration Types
4.2 Integer Types
43 Floating Point Types
4.4 Fixed Point Types
4.5 Access Types
4.6 Task Types
4.7 Array Types
4.8 Record Types
48.1 RECORD_SIZE
482 VARIANT_INDEX
4.8.3 ARRAY_DESCRIPTOR
4.8.4 RECORD_DESCRIPTOR
5 Conventions for Implementation-Generated Names
6 Address Clauses
6.1 Address Clauses for Objects
6.2 Address Clauses for Program Units
6.3

Address Clauses for Entries

Table of Contents

BELOROON

11
12
14
16
17
18
21
26
26
27
28

29

29
29
30
30




7 Restrictions on Unchecked Conversions

8 Input-Output Packages

8.1 Correspondence between External Files and 286 DOS Files
8.2 Error Handling

8.3 The FORM Parameter

8.4 Sequential Files

8.5 Direct Files

8.6 Text Files

8.7 Access Protection of External Files

8.3 The Need to Close a File Explicitly

8.9 Limitation on the procedure RESET

8.10 Sharing of External Files and Tasking Issues

Characteristics of Numeric Types
9.1 Integer Types
9.2 Floating Point Type Attributes
9.3 Attributes of Type DURATION

10 Other Implementation-Dependent Characteristics
10.1  Use of the Floating-Point Coprocessor (80287)

10.2  Characteristics of the Heap

10.3  Characteristics of Tasks

10.4 Definition of a Main Subprogram

10.5 Ordering of Compilation Units

11 Limitations
11.1 Compiler Limitations
11.2 Hardware Related Limitations

INDEX

i Alsys 286 DOS Ada Compiler. Appendix F. Version 4.2

34
34
34
35

35
35
36
36
37
37

37
37
37

39




APPENDIX F

Implementation - Dependent Characteristics

This appendix summarizes the implementation-dependent characteristics of the Alsys 286
DOS Ada Compiler. This appendix is a required part of the Reference Manual for the
Ada Programming Language (called the RM in this appendix).

The-sections of this appendix-are as follows:

I.

10.

1.

The form, allowed places, and effect of every implementation-dependent
pragma.

The name and the type of every implementation-dependent attribute.
The specification of the package SYSTEM.
The list of all restrictions on representation clauses.

The conventions used for any implementation-generated name denoting im-
plementation-dependent components.

The interpretation of expressions that appear in address clauses, including
those for interrupts.

Any restrictions on unchecked conversions.

Any implementation-dependent characteristics of the input-output packages.
Characteristics of numeric types.

Other implementation-dependent characteristics.

Compiler limitations.

The name Alsys Runtime Executive Programs or simply Runtime Executive refers to the
runtime library routines provided for all Ada programs. These routines impiement the
Ada heap, exceptions, tasking control, and other utility functions.

General systems programming notes are given in another document, the Application De-
veloper's Guide (for example, pzrameter passing conventions needed for interface with
assembly routines).

Appendix F. Implementation-Dependent Characteristics o




1 lmplementation-Dépendent Pragmas

1.1 INLINE

Pragma INLINE is fully supported; however, it is not possible to inline INLINE a
subprogram in a declarative part.

1.2 INTERFACE

Ada programs can interface with subprograms written in Assembler and other languages
through the use of the predefined pragma INTERFACE and the implementation-defined
pragma INTERFACE _NAME.

Pragma INTERFACE specifies the name of an interfaced subprogram and the name of
the programming language for which parameter passing conventions will be generated.
Pragma INTERFACE takes the form specified in the RM:

pragma INTERFACE (language_name, subprogram_name),
where,
» language name is ASSEMBLER, ADA, or C.

a  subprogram_name is the name used within the Ada program to refer to the
interfaced subprogram.

The only language names accepted by pragma INTERFACE are ASSEMBLER, ADA and
C. The full implementation requirements for writing pragma INTERFACE subprograms
are described in the Application Developer’s Guide.

The language name used in the pragma INTERFACE does not have to have any re-
lationship to the language actually used to write the interfaced subprogram. It is used
only to tell the Compiler how to generate subprogram calls; that is, what kind of
parameter passing techniques to use. The programmer can interface Ada programs with
subroutines written in any other (compiled) language by understanding the mechanisms
used for parameter passing by the Alsys 286 DOS Ada Compiler and the corresponding
mechanisms of the chosen external language.

1.3 INTERFACE__NAME

Pragma INTERFACE__NAME associates the name of the interfaced subprogram with
the external name of the interfaced subprogram. If pragma INTERFACE_NAME is not
used, then the two names are assumed to be identical. This pragma takes the form:

pragma INTERFACE_NAME (subprogram_name, string_literal),

Alsys 286 DOS Ada Compiler. Appendix F. Version 4.2




where,

w subprogram_name is the name used within the Ada program to refer to the
interfaced subprogram.

w string_literal is the name by which the interfaced subprogram is referred to
at link time.

The pragma INTERFACE_NAME is used to identify routines in other languages that
are not named with legal Ada identifiers. Ada identifiers can only contain letters, dig-
its, or underscores, whereas the DOS Linker allows external names to contain other
characters, for example, the dollar sign ($) or commercial at sign (@). These characters
can be specified in the string_literal argument of the pragma INTERFACE__NAME.

The pragma INTERFACE_NAME is allowed at the same places of an Ada program as
the pragma INTERFACE. (Location restrictions can be found in section 13.9 of the
RM.) However, the pragma INTERFACE_NAME must always occur after the pragma
INTERFACE declaration for the interfaced subprogram.

The string _literal of the pragma INTERFACE_NAME is passed through unchanged to
the 286 DOS object file. = The maximum length of the string_literal is 40 characters.
This limit is not checked by the Compiler, but the string is truncated by the Binder to
meet the Intel object module format standard. (For example, the IBM Macro
Assembler limits external identifiers to 31 characters.)

The Runtime Executive contains several external identifiers. All such identifiers begin
with either the string "ADA@" or the string "ADAS@". Accordingly, names prefixed by
"ADA@" or "ADAS@" should be avoided by the user.

Example
package SAMPLE_DATA is
function SAMPLE DEVICE (X: INTEGER) return INTEGER;
function PROCESS_SAMPLE (X: INTEGER) return INTEGER;
private
pragma INTERFACE (ASSEMBLER, SAMPLE_DEVICE);
pragna INTERFACE (ADA, PROCESS_SAMPLE);

pragms INTERFACE_NAME (SAMPLE DEVICE, “DEVIOSGET_SAMPLE");
end SAMPLE_DATA;

1.4 INDENT

Pragma INDENT is only used with 4 aReformat. AdaReformat is the Alsys reformatter
which offers the functionalities ot a pretty-printer in an Ada environment.

The pragma is placed in the source file and interpreted by the Reformatter.
pragma INDENT(OFF);

causes AdaReformat not to riodify the source lines after this pragma.

Appendix F, Implementation-Dependent Characteristics 3




pragma INDENT(ON);

causes AdaReformat to resume its action after this pragma.

1.5 Other Pragmas

Pragmas IMPROVE and PACK are discussed in detail in the section on representation
clauses and records (Chapter 5).

Pragma PRIORITY is accepted with the range of priorities running from 1 to 10 (see the
definition of the predefined package SYSTEM in Section 3). Undefined priority (no
pragma PRIORITY) is treated as though it were less than any defined priority value.

In addition to pragma SUPPRESS, it is possible to suppress all checks in 2 given compi-
lation by the use of the Compiler option CHECKS.

2 Implementation-Dependent Attributes

P'IS_ARRAY For a prefix P that denotes any type or subtype, this at-
tribute yields the value TRUE if P in an array type or
an array subtype; otherwise, it yields the value FALSE.

P'RECORD_DESCRIPTOR  These attributes are used to control the representa
P'ARRAY_DESCRIPTOR tion of implicit components of a record, see section
4.8

3 Specification of the package SYSTEM

The imRIIIementation dos not allow the recompilation of paékage
SYSTEM. ~

package SYSTEM is

-n Radd e i s d il Al a2 tilellll]

- * (1) Required Definitions. *

-e Rt a2 dd Al il il Al et et lilellld]

type NAME is (1_80x86);
SYSTEM_NAME : constant NAME := [_80x86;

STORAGE_UNIT : constant := 8;
MEMORY_SIZE : constant := 640 * 1024;

.

- System-Dependent Named Numbers:

MIN_INT : constant :3 -(2 **31);
MAX_INT ¢ constant := 2+*31 - 1;

Alsys 286 DOS Ada Compiler. Appendix F. Version 4.2




MAX_DIGITS : constant := 15;
MAX_MANTISSA : constant := 31;
FINE_OELTA : constant :x 2#1.0#E-31;

Appendix F, Implementation-Dependent Characteristics




-- For the high-resolution timer, the clock resolution is
-= 1.0 7 1024.0.
TI1CK : constant := 1.0 / 18.2;

-- Other System-Dependent Declarations:
subtype PRIORITY is INTEGER range 1 .. 10;

-« The type ADDRESS is, in fact, implemented as a
-~ segment:offset pair.

type ADDRESS is private;
NULL_ADDRESS: constant ADDRESS := nuil;

-- Raddl a2 i 22 el el il sl siltd)

e ® (2) MACHINE TYPE CONVERSIONS *

- Lo i ad d a2 2 a2l i il edsdsdslsd

-- 1f the word / double-word operations below are used on
-- ADDRESS, then MSW yields the segent and LSW yields the
-- offset.

-- In the operations below, 8 BYTE_TYPE is any simple type

-- implemented on 8-bits (for example, SHORT_INTEGER), a WORD_TYPE is
-- any simple type implemented on 16-bits (for example, INTEGER), and
-- a DOUBLE_WORD_TYPE is any simple type implemented on

-- 32-bits (for example, LONG_INTEGER, FLOAT, ADDRESS).

-- Byte <=z=> {ord conversions:

-- Get the most significant byte:
generic
type BYTE_TYPE is private;
type WORD_TYPE is private;
function MSB (W: WORD_TYPE) return BYTE_TYPE;

-- Get the least significant byte:
generic

type BYTE_TYPE is private;

type WORD_TYPE is private; _
function LSB (W: WORD_TYPE) return BYTE_TYPE;

-- Compose a word from two bytes:
generic
type 8YTE_TYPE is private;
type WORD_TYPE is private;
function WORD (MSB, LSB: BYTE_TYPE) return WORD_TYPE;

Alsys 286 DOS Ada Compiler, Appendix F. Version 4.2




Appendix F,

-- Word <3=> Double-Word conversions:

-- Get the most significant word:
generic
type WORD_TYPE is private;
type DOUBLE_WORD_TYPE is private;
firetion MSW (W: DOUBLE_WORD_TYPE) return WORD_TYPE:

-- Get the least significant word:
generic
type WORD_TYPE is private;
type DOUBLE_WORD_TYPE is private;
function LSW(W: DOUBLE_WORD_TYPE) return WORD_TYPE;

-- Compose & DATA double word from two words,
generic

type WORD_TYPE is private;

~- The following type must be a data type

«- (for example, LONG_INTEGER):

type DATA_DOUBLE_WORD is private;
function DOUBLE_WORD (MSW, LSW: WORD_TYPE)

return DATA_DOUBLE_WORD;

-- Compose a REFERENCE double word from two words.
generic
type WORD_TYPE is private;
-- The following type must be a reference type
-- (for example, access or ADDRESS):
type REF_DOUBLE_WORD is private;
function REFERENCE (SEGMENT, OFFSET: WORD_TYPE)
return REF_DOUBLE_WORD;

.- AREERERANIN SRR A AN TN A TR RY

.- * (3) OPERATIONS ON ADDRESS *

- ARV ENEN AR A ARSI AN O PR R R TSN

=- You can get an address via 'ADDRESS attribute or by
-- instantiating the function REFERENCE, above, with
-- appropriate types.

-- Some addresses are used by the Compiler. For example,
-- the display is located at the low end of the DS segment,
-- and addresses SS:0 through $S:128 hold the task control
-- block and other information. Writing into these areas
-- will have unpredictable results.

-+ Note that no operations are defined to get the values of

-- the gegment registers, but if it is necessary an
-- interfaced function can be written.

Implementation-Dependent Characteristics




generic
type OBJECT is private;
function FETCH_FROM_ADDRESS (FROM: ADDRESS) return OBJECT;
generic
type OBJECT is private;
procedure ASSIGN_TO_ADORESS (OBJ: OBJECT; TO: ADORESS);

private

end SYSTEM;

4 - Restrictions on Representation Clauses

This section explains how objects are represented and allocated by the Alsys 286 DOS
Ada compiler and how it is possible to control this using representation clauses.

The representation of an object is closely connected with its type. For this reason this
section addresses successively the representation of enumeration, integer, floating point,
fixed point, access, task, array and record types. For each class of type the
representation of the corresponding objects is described.

Except in the case of array and record types, the description for each class of type is
independent of the others. To understand the representation of an array type it is
necessary to understand first the representation of its components. The same rule applies
to record types.

Apart from implementation defined pragmas, Ada provides three means to control the
size of objects:

» a (predefined) pragma PACK, applicable to array types

s a record representation clause

s a size specification
For each class of types the effect of a size specification is described. Interference
between size specifications, packing and record representation clauses is described under
array and record types.

Representation clauses on derived record, or derived tasks are not supported.

Size representation clauses on types derived from private types are not supported when
the derived type is declared outside the private part of the defining package.

Alsys 286 DOS Ada Compiler, Appendix F. Version 4.2




4.1 Enumeration Types
Internal codes of enumeration literals

When no enumeration representation clause applies to an enumeration type, the internal
code associated with an enumeration literal is the position number of the enumeration
literal. Then, for an enumeration type with n elements, the internal codes are the
integers 0, 1, 2, .., n-1.

An enumeration representation clause can be provided to specify the value of each
internal code as described in RM 13.3. The Alsys compiler fully implements enumeration
representation clauses.

As internal codes must be machine integers the internal codes provided by an
enumeration representation clause must be in the range -23! . 231-|.

Encoding of enumeration values

An enumeration value is always represented by its internal code in the program
generated by the compiler.

Minimum size of an enumeration subtype

The minimum size of an enumeration subtype is the minimum number of bits that is
necessary for representing the internal codes of the subtype values in normal binary
form.

For a static subtype, if it has a nuil range its minimum size is 1. Otherwise, if m and M
are the values of the internal codes associated with the first and last enumeration values
of the subtype, then its minimum size L is determined as follows. For m >= 0, L is the
smallest positive integer such that M <= 2L-1. For m < 0, L is the smallest positive
integer such that -2L"! <= m and M <= 2L°1.).

type COLOR is (GREEN, BLACK, WHITE, RED, BLUE, YELLOW);
-- The minimum size of COLOR is 3 bits.

subtype BLACK_AND_WHITE is COLOR range BLACK .. WHITE;
-- The minimum size of BLACK_AND_WHITE is 2 bits.

subtype BLACK__OR_WHITE is BLACK_AND_WHITE range X .. X;

-- Assuming that X is not static, the minimum size of BLACK _OR_WHITE is
-~ 2 bits (the same as the minimum size of its type mark

BLACK _AND_WHITE).

Size of an enumeration subtype

When no size specification is applied to an enumeration type or first named subtype, the
objects of that type or first named subtype are represented as signed machine integers.

Appendix F, Implementation-Dependent Characteristics 9




The machine provides 8, 16 and 32 bit integers, and the compiler selects automatically
the smallest signed machine integer which can hold each of the internal codes of the
enumeration type (or subtype). The size of the enumeration type and of any of its
subtypes is thus 8, 16 or 32 bits.

When a size specification is applied to an enumeration type, this enumeration type and
each of its subtypes has the size specified by the length clause. The same rule applies to
a first named subtype. The size specification must of course specify a value greater than

or equal to the minimum size of the type or subtype to which it applies:

type EXTENDED is

(

-- The usual ASCII characters.
NUL, SOH, STX, ETX,

BS, HT, LF, VT,

DLE, DCi, DC2, DC3,
CAN, EM, SUB, ESC,

s '!" 'm' #*
v(o’ o)" v‘v, '+"
qoo’ olv’ 920’ '31,
189’ vgv, s:o' ';"
0@9’ 'A’, ’B" ch’
1H9' qlv, ko, ,K',
'P', qQ', 'R,, 'S',
’xs, ’Y" 129‘ o[v'

i

I.', ’a" ’bQ' c .
9h9’ 'i!’ Ij" )k’,
'pﬂ, ’q" 'r” 's’,
UXQ’ !y!’ 'z” '(!,

LEFT_ARROW,
RIGHT_ARROW,
UPPER_ARROW,
LOWER_ARROW,
UPPER_LEFT_CORNER,
UPPER_RIGHT _CORNER,
LOWER_RIGHT_CORNER,
LOWER_LEFT_CORNER

)

for EXTENDED'SIZE use 8;
~- The size of type EXTENDED will be one byte. Its objects will be represented
-- as unsigned 8 bit integers.

EOT,
FF,
DCA4,
FS,
!S”

LI
A

4,
LA |

<’
1Ty
D',

A
'I- .

"\
'd',
‘l"
Qt"

q'
?*

ENQ,
CR,
NAK,
GS,
'%9'
v5|'

=,

'E‘,
QM'
'U’:
9]"
'e’,
, ’
m,

..t

u,

!}"

BEL,
SI,
ETB,

The Alsys compiler fully implements size specifications. Nevertheless, as enumeration
values are coded using integers, the specified length cannot be greater than 32 bits.

Size of the objects of an enumeration subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an enumeration subtype has the same size as its subtype.

10

Alsys 286 DOS Ada Compiler. Appendix F, Version 4.2

-- Exte




4.2 Integer Types
Predefined integer types

There are three predefined integer types in the Alsys implementation for I80x86
machines:

type SHORT_INTEGER is range -2**07 .. 2**07-1;
type INTEGER is range -2%*15 .. 2**15-1;
type LONG_INTEGER is range -2%*31 ., 2**3]-|;

Selection of the parent of an integer type
An integer type declared by a declaration of the form:

type T is range L .. R;
is implicitly derived from a predefined integer type. The compiler automatically selects
the predefined integer type whose range is the smailest that contains the values L to R
inclusive.
Encoding of integer values
Binary code is used to represent integer values. Negative numbers are represented using
two’s complement,.

Minimum size of an integer subtype

The minimum size of an integer subtype is the minimum number of bits that is
necessary for representing the internal codes of the subtype values in normal binary
form. :

For a static subtype, if it has a null range its minimum size is 1. Otherwise, if m and M
are the lower and upper bounds of the subtype, then its minimum size L is determined
as follows. For m >= 0, L is the smallest positive integer such that M <= 2L-1. Fer
m < 0, L is the smallest positive integer that -2X"! <= m and M <= 2L°1-1.

subtype S is INTEGER range 0 .. 7;
-- The minimum size of S is 3 bits.
subtype D is S range X .. Y;

-- Assuming that X and Y are not static, the minimum size of
-- D is 3 bits (the same as the minimum size of its type mark S).

Appendix F, Implementation-Dependent Characteristics 11




Size of an integer subtype

The sizes of the predefined integer types SHORT_INTEGER, INTEGER and
LONG__INTEGER are respectively 8, 16 and 32 bits.

When no size specification is applied to an integer type or to its first named subtype (if
any), its size and the size of any of its subtypes is the size of the predefined type from
which it derives, directly or indirectly. For example:

type S is range 80 .. 100;
-- S is derived from SHORT_INTEGER, its size is 8 bits.

type J is range 0 .. 255;
-- J is derived from INTEGER, its size is 16 bits.

type N is new J range 80 .. 100;
-- N is indirectly derived from INTEGER, its size is 16 bits.

When a size specification is applied to an integer type, this integer type and each of its
subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies:

type S is range 80 .. 100;

for S’SIZE use 32;

-- S is derived from SHORT_INTEGER, but its size is 32 bits
-- because of the size specification.

type J is range 0 .. 255;

for J'SIZE use 8;

-- J is derived from INTEGER, but its size is 8 bits because
-- of the size specification.

type N is new J range 80 .. 100;
-- N is indirectly derived from INTEGER, but its size is 8 bits
~-- because N inherits the size specification of J.
Size of the objects of an integer subtype
Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an integer subtype has the same size as its subtype.
4.3 Floating Point Types
Predefined floating point types

There are two predefined floating point types in the Alsys implementation for 180x86
machines:

12 Alsys 286 DOS Ada Compiler. Appendix F, Version 4.2




type FLOAT is
digits 6 range -(2.0 - 2.0*%(-23))*2.0°*127 .. (2.0 - 2.0**(-23))*2.0**127;

type LONG_FLOAT is
digits 15 range -(2.0 - 2.0%*(-51))*2.0**i023 .. (2.0 - 2.0**(-51))*2.0**1023;

Selection of the parent of a floating point type
A floating point type declared by a declaration of the form:

type T is digits D [range L .. R);
is implicitly derived from a predefined floating point type. The compiler automatically
selects the smallest predefined floating point type whose number of digits is greater than
or equal to D and which contains the values L to R inclusive.

Encoding of floating point values

In the program generated by the compiler, floating point values are represented using
the IEEE standard formats for single and double floats.

The values of the predefined type FLOAT are represented using the single float format.
The values of the predefined type LONG _FLOAT are represented using the double
float format. The values of any other floating point type are represented in the same
way as the values of the predefined type from which it derives, directly or indirectly.
Minimum size of a floating point subtype

The minimum size of a floating point subtype is 32 bits if its base type is FLOAT or a
type derived from FLOAT,; it is 64 bits if its base type is LONG_FLOAT or a type
derived from LONG_FLOAT.. .

Size of a floating point subtype

The sizes of the predefined floating point types FLOAT and LONG_FLOAT are
respectively 32 and 64 bits.

The size of a floating point type and the size of any of its subtypes is the size of the
predefined type from which it derives directly or indirectly.

The only size that can be specified for a floating point type or first named subtype
using a size specification is its usual size (32 or 64 bits).

Size of the objects of a floating point subtype

An object of a floating point subtype has the same size as its subtype.

Appendix F, Implementation-Dependent Characteristics 13




4.4 Fixed Point Types

Small of a fixed point type

If no specification of small applies to a fixed point type, then the value of smalil is
determined by the value of delta as defined by RM 3.5.9.

A specification of small can be used to impose a value of small. The value of small is
required to be a power of two.
Predefined fixed point types

To implement fixed point types, the Alsys compiler for [80x86 machines uses a set of
anonymous predefined types of the form:

type SHORT _FIXED is delta D range (-2.0%*07-1)*S .. 2.0**07*S;
for SHORT _FIXED'SMALL use §;

type FIXED is delta D range (-2.0**15-1)*S .. 2.0**]5*S;
for FIXED'SMALL use §;

type LONG_FIXED is delta D range (-2.0**31-1)*S .. 2.0**3[*§;
for LONG_FIXED'SMALL use §;

where D is any real value and S any power of two less than or equal to D.

Selection of the parent of a fixed point type
A fixed point type declared by a declaration of the form:
type T is deita D range L .. R;
possibly with a small specification:
for TSMALL use §;
is implicitly derived from a predefined fixed point type. The compiler automatically

selects the predefined fixed point type whose smail and delta are the same as the s.mall
and delta of T and whose range is the shortest that includes the values L to R inclusive.

Encoding of fixed point values

In the program generated by the compiler, a safe value V of a fixed point subtype F is
represented as the integer:

V / FBASE'SMALL

14 Alsys 286 DOS Ada Compiler, Appendix F, Version 4.2




Minimum size of a fixed point subtype

The minimum size of a fixed point subtype is the minimum number of binary digits that

is necessary for representing the values of the range of the subtype using the small of
the base type.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, s and S
being the bounds of the subtype, if i and I are the integer representations of m and M,
the smallest and the greatest model numbers of the base type such thats <mand M < S,
then the minimum size L is determined as follows. For i >= 0, L is the smallest positive
integler such that I <= 2L-1. For i < 0, L is the smallest positive integer such that
22l cajand [ <= 2071,

type F is delta 2.0 range 0.0 .. 500.0;
-- The minimum size of F is 8 bits.

subtype S is F delta 16.0 range 0.0 .. 250.0;
-- The minimum size of S is 7 bits.

subtype D is S range X .. Y;
-- Assuming that X and Y are not static, the minimum size of D is 7 bits
-- (the same as the minimum size of its type mark S).

Size of a fixed point subtype

The sizes of the predefined fixed point types SHORT_FIXED, FIXED and
LONG_FIXED are respectively 8, 16 and 32 bits.

When no size specification is applied to a fixed point type or to its first named subtype,
its size and the size of any of its subtypes is the size of the predefined type from which
it derives directly or indirectly. For example;

type S is delta 0.01 range 0.8 .. 1.0;
-~ 8 is derived from an 8 bit predefined fixed type, its size is 8 bits.

type F is delta 0.0 range 0.0 .. 2.0;
-~ F is derived from a 16 bit predefined fixed type, its size is 16 bits.

type N is new F range 0.8 .. 1.0;
-- N is indirectly derived from a 16 bit predefined fixed type, its size is 16 bits.

When a size specification is applied to a fixed point type, this fixed point type and each
of its subtypes has the size specified by the length clause. The same rule applies to a
first named subtype. The size specification must of course specify a value greater than
or equal to the minimum size of the type or subtype to which it applies:

type S is deita 001 range 0.8 .. 1.0;

for S'SIZE use 3z,
-- S is derived from an 8 bit predefined fixed type, but its size is 32 bits

Appendix F, Implementation-Dependent Characteristics 15




-- because of the size specification.

type F is delta 0.01 range 0.0 .. 2.0;

for F'SIZE use 8;

-- F is derived from a 16 bit predefined fixed type, but its size is 8 bits

-- because of the size specification.

type N is new F range 0.8 .. 1.0;

-- N is indirectly derived from a 16 bit predefined fixed type, but its size is

-- 8 bits because N inherits the size specification of F.
The Alsys compiler fully implements size specifications. Nevertheless, as fixed point
objects are represented using machine integers, the specified length cannot be greater
than 32 bits.
Size of the objects of a fixed point subtype
Provic}ed its size is not constrained by a record component clause or a pragma PACK, an
object of a fixed point type has the same size as its subtype.
4.5 Access Types

Collection Size

As described in RM 13.2, a specification of collection size can be provided in order to
reserve storage space for the collection of an access type.

When no STORAGE_SIZE specification applies to an access type, no storage space is
reserved for its collection, and the value of the attribute STORAGE_SIZE is then 0.

STORAGE_SIZE clause on collections of unconstrained objects is not supported by the
implementation.

The maximum size allowed for a collection is 64¥bytes.

Encoding of access values.

Access values are machine addresses.

Minimum size of an access subtype

The minimum size of an access subtype is 32 bits.

Size of an access subtype

The size of an access subtype is 32 bits, the same as its minimum size.

16 Alsys 286 DOS Ada Compiler, Appendix F. Version 4.2




The only size that can be specified for an access type using a size specification is its
usual size (32 bits).
Size of an object of an access subtype

An object of an access subtype has the same size as its subtype, thus an object of an
access subtype is always 32 bits long.

4.6 Task Types

Storage for a task activation

When no length clause is used to specify the storage space to be reserved for a task
activation, the storage space indicated at bind time is used for this activation.

As described in RM 13.2, a length clause can be used to specify the storage space for
the activation of each of the tasks of a given type. In this case the value indicated at
bind time is ignored for this task type, and the length clause is obeyed.

It is not allowed to apply such a length clause to a derived type. The same storage space
is reserved for the activation of a task of a derived type as for the activation of a task
of the parent type.

Encoding of task values

Encoding of a task value is not described here.

Minimum size of a task subtype

The minimum size of a task subtype is 32 bits.

Size of a task subtype

The size of a task subtype is 32 bits, the same as its minimum size.

A size specification has no effect on a task type. The only size that can be specified
using such a length clause is its minimum size.

Size of the objects of a task subtype

An object of a task subtype has the same size as its subtype. Thus an object of a task
subtype is always 32 bits long.

Appendix F, Implementation-Dependent Characteristics 17




4.7 Array Types
Layout of an array
Each array is allocated in a contiguous area of storage units. All the components have

the same size. A gap may exist between two consecutive components (and after the last
one). All the gaps have the same size.

Component Gap Component Gap Component Gap

Components

If the array is not packed, the size of the components is the size of the subtype of the
components:

type A is array (1 .. 8) of BOOLEAN;
-- The size of the components of A is the size of the type BOOLEAN: 8 bits.

type DECIMAL_DIGIT is range 0 .. 9;
for DECIMAL _ DIGIT'SIZE use 4;
type BINARY_CODED_DECIMAL is
array (INTEGER range <>) of DECIMAL_DIGIT;
-- The size of the type DECIMAL _DIGIT is 4 bits. Thus in an array of
-- type BINARY_CODED_DECIMAL each component will be represented on
-~ 4 bits as in the usual BCD representation.

If the array is packed and its components are neither records nor arrays, the size of the
components is the minimum size of the subtype of the components:

type A is array (1 .. 8) of BOOLEAN;

pragma PACK(A);

-- The size of the components of A is the minimum size of the type BOOLEAN:
-- 1 bit.

type DECIMAL_DIGIT is range 0 .. 9;
for DECIMAL _DIGIT'SIZE use 32;
type BINARY_CODED_DECIMAL is
array (INTEGER range <>) of DECIMAL_ DIGIT;
pragma PACK(BINARY_CODED_DECIMAL),
-- The size of the type DECIMAL _DIGIT is 32 bits, but, as
-- BINARY_CODED_DECIMAL is packed, each component of an array of this
-- type will be represented on 4 bits as in the usual BCD representation.

Packing the array has no effect on the size of the components when the components are
records or arrays.

18 Alsys 286 DOS Ada Compiler, Appendix F, Version 4.2




Gaps

If the components are records or arrays, no size specification applies to the subtype of
the components and the array is not packed, then the compiler may choose a
representation with a gap after each component; the aim of the insertion of such gaps is
to optimize access to the array components and to their subcomponents. The size of the
gap is chosen so that the relative displacement of consecutive components is a multiple
of the alignment of the subtype of the components. This strategy allows each component
and subcomponent to have an address consistent with the alignment of its subtype:

type R is
record
K : INTEGER; -- INTEGER is even byte aligned.
B : BOOLEAN; -- BOOLEAN is byte aligned.
end record;
-- Record type R is even byte aligned. Its size is 24 bits.
type A is array (1 .. 10) of R;
-- A gap of one byte is inserted after each component in order to respect the
-- alignment of type R. The size of an array of type A will be 320 bits.

Component Gap Component Gap Component Gap

Array of type A: each subcomponent K has an even offset.

If a size specification applies to the subtype of the components or if the array is packed,
no gaps are inserted:

type R is
record
K : INTEGER;
B : BOOLEAN;

end record;

type A is array (1 .. 10) of R;

pragma PACK(A);

-- There is no gap in an array of type A because
-- A is packed.

-~ The size of an object of type A will be 240 bits.

type NR is new R;
for NR'SIZE use 24;

type B is array (1 .. 10) of NR;
-- There is no gap in an array of type B because

Appendix F, Implementation-Dependent Characteristics 19




-- NR has a size specification.
-- The size of an object of type B will be 240 bits.

------

......

Component Component

Array of type A or B: a subcomponent K can have an odd of fset.

Size of an array subtype

The size of an array subtype is obtained by multiplying the number of its components
by the sum of the size of the components and the size of the gaps (if any). If the
subtype is unconstrained, the maximum number of components is considered.

The size of an array subtype cannot be computed at compile time

s if it has non-static constraints or is an unconstrained array type with non-
static index subtypes (because the number of components can then only be
determined at run time).

» if the components are records or arrays and their constraints or the
constraints of their subcomponents (if any) are not static (because the size of
the components and the size of the gaps can then only be determined at run
time).

As has been indicated above, the effect of a pragma PACK on an array type is to
suppress the gaps and to reduce the size of the components. The consequence of packing
an array type is thus to reduce its size.

If the components of an array are records or arrays and their constraints or the
constraints of their subcomponents (if any) are not static, the compiler ignores any
pragma PACK applied to the array type but issues a warning message. Apart from this
limitation, array packing is fully implemented by the Alsys compiler.

A size specification applied to an array type or first named subtype has no effect. The
only size that can be specified using such a length clause is its usual size. Nevertheless,
such a length clause can be useful to verify that the layout of an array is as expected by
the application.

Size of the objects of an array subtype

The size of an object of an array subtype is always equal to the size of the subtype of
the object.

20 Alsys 286 DOS Ada Compiler, Appendix F, Version 4.2




4.8 Record Types
Layout of a record

Each record is allocated in a contiguous area of storage units. The size of a record
component depends on its type. Gaps may exist between some components.

The positions and the sizes of the components of a record type object can be controlled
using a record representation clause as described in RM [34. In the Alsys
implementation for 180x86 machines there is no restriction on the position that can be
specified for a component of a record. If a component is not a record or an array, its
size can be any size from the minimum size to the size of its subtype. If a component is
a record or an array, its size must be the size of its subtype:

type INTERRUPT_MASK Is array (0 .. 2) of BOOLEAN;
pragma PACK(INTERRUPT_MASK),
-- The size of INTERRUPT_MASK is 3 bits.

type CONDITION_CODE is 0 .. I;
-- The size of CONDITION_CODE is 8 bits, its minimum slze is 1 bit.

type STATUS_BIT is new BOOLEAN;
for STATUS_BIT'SIZE use I;
-- The size and the minimum size of STATUS_BIT are | bit.

SYSTEM : coastant := 0;

USER : constant := |
type STATUS_REGISTER is
record

T : STATUS_BIT; -- Trace
S : STATUS_BIT; -~ Supervisor
I: INTERRUPT_MASK; -- Interrupt mask
X : CONDITION_CODE; -- Extend
N : CONDITION_CODE; -- Negative
Z : CONDITION_CODE; -~ Zero
V : CONDITION_CODE; -- Overflow
C : CONDITION_CODE; -~ Carry

end record;

for STATUS__REGISTER use
record at mod 2;

T at SYSTEM range 0 .. 0;
S at SYSTEM range 2 .. 2;
I at SYSTEM range 5 .. 7,
X at USER range 3 .. 3;
N at USER range 4 .. 4;
Z at USER range 5 .. §;
YV at USER range 6 .. 6;
C at USER range 7 .. 7;

end record;

Appendix F, Implementation-Dependent Characteristics 21




A record representation clause need not specify the position and the size for every
component.

Pragma PACK has no effect on records.

If no component clause applies to a component of a record, its size is the size of its
subtype. Its position is chosen by the compiler so as to optimize access to the
components of the record: the offset of the component is chosen as a multiple of 8 bits
if the objects of the component subtype are usually byte aligned, but a multiple of 16
bits if these objects are usually even byte aligned. Moreover, the compiler chooses the
position of the component so as to reduce the number of gaps and thus the size of the
record objects.

Because of these optimizations, there is no connection between the order of the
components in a record type declaration and the positions chosen by the compiler for
the components in a record object.

Indirect components

If the offset of a component cannot be computed at compile time, this offset is stored in

the record objects at run time and used to access the component. Such a component is
said to be indirect while other components are said to be direct:

Beginning of the record

Compile time offset
DIRECT

Compile time offset
OFFSET

Run time offset
INDIRECT

A direct and an indirect component

If a record component is a record or an array, the size of its subtype may be evaluated
at run time and may even depend on the discriminants of the record. We will call these
components dynamic components:

type DEVICE is (SCREEN, PRINTER);

22 Alsys 286 DOS Ada Compiler, Appendix F, Version 4.2




type COLOR is (GREEN, RED, BLUE);
type SERIES is array (POSITIVE range <>) of INTEGER;

type GRAPH (L : NATURAL) is
record
X : SERIEY(! .. L); -- The size of X depends on L
Y : SERIES(] .. L); -- The size of Y depends on L
end record;

Q : POSITIVE;

type PICTURE (N : NATURAL; D : DEVICE) is
record
F : GRAPH(N); -- The size of F depends on N
S : GRAPH(Q); -- The size of S depends on Q
case D is
when SCREEN =>
C : COLOR;
when PRINTER =>
oull;
end case;
end record;

Any component placed after a dynamic component has an offset which cannot be
evaluated at compile time and is thus indirect. In order to minimize the number- of
indirect components, the compiler groups the dynamic components together and places
them at the end of the record:

D = SCREEN D = PRINTER
N=2 N=1
Beginning of the record
S OFFSET S OFFSET
Compile time offsets
F OFFSET F OTFSET
em— —

N N

——
c -
Run time offsets : F

Appendix F, Implementation-Dependent Characteristics 23




The record type PICTURE: F and S are placed at the end of the record

Because of this approach, the only indirect components are dynamic components. But
not all dynamic components are necessarily indirect: if there are dynamic components in
a component list which is not followed by a variant part, then exactly one dynamic
component of this list is a direct component because its offset can be computed at
compilation time (the only dynamic components that are direct components are in this
8situation):

24 Alsys 286 DOS Ada Compiler, Appendix F. Version 4.2




————  Beginning of the record
Y OFFSET

———  Compile time offset
L

————. COmpile time offset

X Size dependent on discriminant L

——  RUN time offset

Y Size dependent on discriminant L

The record type GRAPH: the dynamic component X is a direct component.

The offset of an indirect component is always expressed in storage ur.its.

The space reserved for the offset of an indirect component must be large enough to
store the size of any value of the record type (the maximum potential offset). The
compiler evaluates an upper bound MS of this size and treats an offset as a component
having an anonymous integer type whose range is 0 .. MS.

If C is the name of an indirect component, then the offset of this component can be
denoted in a component clause by the implementation generated name C'OFFSET.

Implicit components

In some circumstances, access to an object of a record type or to its components involves
computing information which only depends on the discriminant values. To avoid useless
recomputation the compiler stores this information in the record objects, updates it
when the values of the discriminants are modified and uses it when the objects or its
components are accessed. This information is stored in special components called implicit
components.

An implicit component may contain information which is used when the record object
or several of its components are accessed. In this case the component wili be included in
any record object (the implicit component is considered to be declared before any
variant part in the record type declaration). There can be two components of this kind;
one is called RECORD_SIZE and the other VARIANT_INDEX.

On the other hand an implicit component may be used to access a given record
component. In that case the implicit component exists whenever the record component
exists (the implicit component is considered to be declared at the same place as the
record component). Components of this kind are cailed ARRAY_DESCRIPTORs or
RECORD_DESCRIPTORs.

Appendix F, Implementation-Dependex: Characteristics 25




4.8.1 RECORD_SIZE

This implicit component is created by the compiler when the record type has a variant
part and its discriminants are defaulted. It contains the size of the storage space
necessary to store the current value of the record object (note that the storage
effectively allocated for the record object may be more than this).

The value of a RECORD_SIZE component may denote a number of bits or a number of
storage units. In general it denotes a number of storage units, but if any component
clause specifies that a component of the record type has an offset or a size which cannot
be expressed using storage units, then the value designates a number of bits.

The implicit component RECORD_SIZE must be large enough to store the maximum
size of any value of the record type. The compiler evaluates an upper bound MS of this
size and then considers the implicit component as having an anonymous integer type
whose range is 0 .. MS. '

If R is the name of the record tyge, this implicit component can be denoted in a
component clause by the implementation generated name R'RECORD_SIZE.

4.8.2 VARIANT_INDEX

This implicit component is created by the compiler when the record type has a variant
part. It indicates the set of components that are present in a record value. It is used
when a discriminant check is to be done.

Component lists that do not contain a variant part are numbered. These numbers are the
possible values of the implicit component VARIANT_INDEX.

type VEHICLE is (AIRCRAFT, ROCKET, BOAT, CAR);

type DESCRIPTION (KIND : VEHICLE := CAR) is
record
SPEED : INTEGER;
case KIND is
when AIRCRAFT | CAR =>
WHEELS : INTEGER;
case KIND is

when AIRCRAFT => --1
WINGSPAN : INTEGER;
when others => -- 2
null;
end case;
when BOAT => --3
STEAM : BOOLEAN;
when ROCKET => -- 4

STAGES : INTEGER,;
end case;
end record;

26 Alsys 286 DOS Ada Compiler. Appendix F, Version 4.2




The value of the variant index indicates the set of components that are present in a
record value:

Varisnt [ndex Set
1 (KIND, SPEED, WHEELS, WINGSPAN)
2 {KIND, SPEED, WHEELS)
3 {KIND, SPEED, STEAM)
4 {KIND, SPEED, STAGES)

A comparison between the variant index of a record value and the bounds of an interval
is enough to check that a given component is present in the value:

Component Interval
KIND .-

SPEED --

WHEELS 1..2
WINGSPAN 1 ..1
STEAM 3..3
STAGES 4 .. 4

The implicit component VARIANT_INDEX must be large enough to store the number
V of component lists that don't contain variant parts. The compiler treats this implicit
component as having an anonymous integer type whose range is | .. V.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R'VARIANT _INDEX.

4.8.3 ARRAY_DESCRIPTOR

An implicit component of this kind is associated by the compiler with each record
component whose subtype is an anonymous array subtype that depends on a discriminant
of the record. It contains information about the component subtype.

The structure of an implicit component of kind ARRAY_DESCRIPTOR is not
described in this documentation. Nevertheless, if a programmer is interested in
specifying the location of a component of this kind using a component clause, he can
obtain the size of the component using the ASSEMBLY parameter in the COMPILE
command.

The compiler treats an implicit component of the kind ARRAY_DESCRIPTOR as
having an anonymous array type. If C is the name of the record component whose
subtype is described by the array descriptor, then this implicit component can be
denoted in a component clause by the implementation generated name
C' ARRAY_DESCRIPTOR.

Appendix F. Implementation-Dependent Characteristics 27




4.8.4 RECORD_DESCRIPTOR"

An implicit component of this kind is associated by the compiler with each record
component whose subtype is an anonymous record subtype that depends on a
discriminant of the record. It contains information about the component subtype.

The structure of an implicit component of kind RECORD_DESCRIPTOR is not
described in this documentation. Nevertheless, if a programmer is interested in
specifying the location of a component of this kind using a component clause, he can
obtain the size of the component using the ASSEMBLY parameter in the COMPILE
command.

The compiler treats an implicit component of the kind RECORD__DESCRIPTOR as
having an anonymous array type. If C is the name of the record component whose
subtype is described by the record descriptor, then this implicit component can be
denoted in a component <clause by the implementation generated name
C'RECORD_DESCRIPTOR.

Suppression of implicit components

The Alsys implementation provides the capability of suppressing the implicit components
RECORD_SIZE and/or VARIANT_INDEX from a record type. This can be done using
an implementation defined pragma called IMPROVE. The syntax of this pragma is as
follows:

pragma IMPROVE ( TIME | SPACE , [ON =>} simple__name );

The first argument specifies whether TIME or SPACE is the primary criterion for the
choice of the representation of the record type that is denoted by the second argument.

If TIME is specified, the compiler inserts implicit components as described above. If on
the other hand SPACE is specified, the compiler only inserts a VARIANT_INDEX or a
RECORD_SIZE.

component if this component appears ia a record representation clause that applies to the
record type. A record representation clause can thus be used to keep one implicit
component while suppressing the other.

A pragma [IMPROVE that applies to a given record type can occur anywhere that a
representation clause is allowed for this type.

Size of a record subtype

Unless a component clause specifies that a component of a record type has an offset or a
size which cannot be expressed using storage units, the size of a record subtype is

rounded up to a whole number of storage units.

The size of a constrained record subtype is obtained by adding the sizes of its
components and the sizes of its gaps (if any). This size is not computed at compile time

28 Alsys 286 DOS Ada Compiler, Appendix F. Version 4.2




= when the record subtype has non-static constraints,

s when a component is an array or a record and its size is not computed at
compile time.

The size of an unconstrained record subtype is obtained by adding the sizes of the
components and the sizes of the gaps (if any) of its largest variant. If the size of a
component or of a gap cannot be evaluated exactly at compile time an upper bound of
this size is used by the compiler to compute the subtype size.

A size specification applied to a record type or first named subtype has no effect. The
only size that can be specified using such a-length clause is its usual size. Nevertheless,
such a length clause can be useful to verify that the layout of a record is as expected by
the application.

Size of an object of a record subtype
An object of a constrained record subtype has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its subtype if this
size is less than or equal to 8 kb. If the size of the subtype is greater than this, the
object has the size necessary to store its current value; storage space is allocated and
released as the discriminants of the record change.

5 Conventions for Implementation-Generated Names

The Alsys 286 DOS Ada Compiler may add fields to record objects and have descriptors
in memory for record or array objects. These fields are not accessible to the user
through any implementation-generated name or attribute.

The following predefined packages are reserved to Alsys and cannot be recompiled in
Yersion 4.2:

ALSYS_ADA_RUNT IME
ALSYS_BASIC_10
ALSYS_BASIC_DIRECT_1O
ALSYS_BASIC_SEQUENTIAL_IO

6 Address Clauses

6.1 Address Clauses for Objects

An address clause can be used to specify an address for an object as described in RM
13.5. When such a clause applies to an object no storage is allocated for it in the
program gererated by the compiler. The program accesses the object using the address
specified in the clause.

Appendix F, Implementation-Dependent Characteristics 29




An address clause is not allowed for task objects, for unconstrained records whose size is
greater than 8 kb., or for a constant.

6.2 Address Clauses for Program Units

Address clauses for program units are not implemented in the current version of the
compiler.

6.3 Address Clauses for Entries

Address clauses for entries are not implemented in the current version of the compiler.

7 Restrictions on Unchecked Conversions

Unchecked conversions are allowed between any types. It is the programmer's re-
sponsibility to determine if the desired effect is achieved.

8 Input-Output Packages

The RM defines the predefined input-output packages SEQUENTIAL_IO,
DIRECT_IO, and TEXT_IO, and describes how to use the facilities available within
these packages. The RM also defines the package 10__EXCEPTIONS, which specifies
the exceptions that can be raised by the predefined input-output packages.

In addition the RM outlines the package LOW_LEVEL_IO, which is concerned with
low-level machine-dependent input-output, such as would possibly be used to write de-
vice drivers or access device registers. LOW_LEVEL_IO has not been implemented.
The use of interfaced subprograms is recommended as an alternative.

8.1 Correspondence between External Files and 286 DOS Files
Ada input-output is defined in terms of external files. Data is read from and written to
external files. Each external file is implemented as a standard 286 DOS file, including
the use of STANDARD_INPUT and STANDARD_OQOUTPUT.
The name of an external file can be either

s the null string

= an 286 DOS filename

s an 286 DOS special file or device name (for example, CON and PRN)

If the name is 2 null string, the associated external file is a temporary file and will cease
to exist when the program is terminated. The file will be placed in the current dir-
ectory and its name will be chosen by 286 DOS.

30 Alsys 286 DOS Ada Compiler, Appendix F, Version 4.2




If the name is an 286 DOS filename, the filename will be interpreted according to stan-
dard 286 DOS conventions (that is, relative to the current directory). The exception
NAME _ERROR is raised if the name part of the filename has more than 8 characters
or if the extension part has more than 3 characters.

If an existing 286 DOS file is specified to the CREATE procedure, the contents of the
file will be deleted before writing to the file.

If a non-existing directory is specified in a file path name to CREATE, the directory
will not be created, and the exception NAME__ERROR is raised.

8.2 Error Handling

286 DOS errors are translated into Ada exceptions, as defined in cthe RM by package
10 _EXCEPTIONS. In particular, DEVICE_ERROR is raised in cases of drive not
ready, unknown media, disk full or hardware errors on the disk (such as read or write
fault).

8.3 The FORM Parameter

The form parameter is a string, formed from a list of attributes, with attributes sep-
arated by commas. The string is not case sensitive. The attributes specify:

s Buffering
BUFFER_SIZE => size_in_bytes
s Appending
APPEND => YES | NOQ
s Truncation of the name by 286 DOS
TRUNCATE => YES | NO
where:
BUFFER_SIZE: Controls the size of the internal buffer. This option is not sup-
ported for DIRECT_IO. The default value is 1024. This option has no effect
when used by TEXT_IO with an external file that is a character device, in which
case the size of the buffer will be 0.
APPEND: If YES output is appended to the end of the existing file. If NO out-
put overwrites the existing file. This option is not supported for DIRECT_IO.
The defauit is NO.
TRUNCATE: If YES the file name will be automatically truncated if it is bigger

than 8 characters. The default value is NO, meaning that the exception
NAME _ERROR will be raised if the name is too long.

Appendix F, Implementation-Dependent Characteristics 31




The exception USE_ERROR is raised if the form STRING in not correct or if a non
supported attribute for a given package is used.

Example:

FORM => "TRUNCATE => YES. APPEND => YES, BUFFER_SIZE => 20480

8.4 Sequential Files

For sequential access the file is viewed as a sequence of values that are transferred in
the order of their appearance (as produced by the program or run-time environment).
This is sometimes called a stream file in other operating systems. Each object in a se-
quential file has the same binary representation as the Ada object in the executable pro-
gram.

8.5 Direct Fil;s

For direct access the file is viewed as a set of elements occupying consecutive positions
in a linear order. The position of an element in a direct file is specified by its index,
which is an integer of subtype POSITIVE_COUNT.

DIRECT_IO only allows input-output for constrained types. If DIRECT_IO is in-
stantiated for an unconstrained type, all calls to CREATE or OPEN will raise
USE_ERROR. Each object in a direct file will have the same binary representation as
the Ada object in the executable program. All elements within the file will have the
same length.

8.6 Text Files

Text files are used for the input and output of information in ASCII character form.
Each text file is a sequence of characters grouped into lines, and lines are grouped into
a sequence of pages.

All text file column numbers, line numbers, and page numbers are values of the subtype
POSITIVE__COUNT.

Note that due to the definitions of line terminator, page terminator, and file terminator
in the RM, and the method used to mark the end of file under 286 DOS, some ASCII
files do not represent well-.formed TEXT_IO files.

A text file is buffered by the Runtime Executive unless

« it names a device (for exampie, CON or PRN).

s it is STANDARD_INPUT or STANDARD_OUTPUT and has not been
redirected.

32 Alsys 286 DOS Ada Compiler, Appendix F, Version 4.2




If not redirected, prompts written to STANDARD _OUTPUT with the procedure PUT
will appear before (or when) a GET (or GET LINE) oceurs.

The functions END_OF_PAGE and END _OF_FILE always return FALSE when the
file is a device, which includes the use of the file CON, and STANDARD_INPUT
when it is not redirected. Programs which would like to check for end of file when the
file may be a device should handle the exception END _ERROR instead, as in the fol-
lowing example:

Example

begin
loop
~-- Display the prompt:
TEXT_IO.PUT ("--> ");
-- Read the next line:
TEXT_IO.GET_LINE (COMMAND, LAST);
-- Now do something with COMMAND (1 .. LAST)
end "‘Op,
exception
when TEXT_IO.END_ERROR =>
null;
end;

END_ERROR is raised for STANDARD_INPUT when ~Z (ASCILSUB) is entered at
the keyboard.

8.7 Access Protection of External Files

All 286 DOS access protections exist when using files under 286 DOS. If a file is open

for read only access by one process it can not be opened by another process for
read/write access.

8.8 The Need to Close a File Explicitly

The Runtime Executive will flush all buffers and close all open files when the program is
terminated, either normally or through some exception.

However, the RM does not define what happens when a program terminates without
closing all the opened files. Thus a program which depends on this feature of the
Runtime Executive might have problems when ported to another system.

8.9 Limitation on the procedure RESET

An internal file opened for input cannot be RESET for output. However, an internal

file opened for output can be RESET for input, and can subsequently be RESET back
to output.

Appendix F, Implementation-Dependent Characteristics 33




8.10 Sharing of External Files and Tasking Issues

Several internal files can be associated with the same external file only if all the internal
files are opened with mode IN_MODE. However, if a file is opened with mode
OUT_MODE and then changed to IN_MODE with the RESET procedure, it cannot be
shared. '

Care should be taken when performing multiple input-output operations on an external
file during tasking because the order of calls to the [/O primitives is unpredictable. For
example, two strings output by TEXT_IO.PUT_LINE in two different tasks may ap-
pear in the output file with interleaved characters. Synchronization of I/O in cases such
as this is the user’s responsibility.

The TEXT_IO files 1.STANDARD_INPUT;STANDARD_INPUT and
i.STANDARD_OUTPUT;STANDARD_OUTPUT are shared by all tasks of an Ada
program.

If TEXT_IO.STANDARD_INPUT is not redirected, it will not block a program on in-
put. All tasks not waiting for input will continue running.

9 Characteristics of Numeric Types
9.1 Integer Types

The ranges of values for integer types declared in package STANDARD are as follows:

SHORT_INTEGER  -128 .. 127 ce 2e7 -9
INTEGER -32768 .. 32767 —- 215 - 1
LONG_INTEGER 2147483648 .. 2147483647 .- 29%31 - 1

For the packages DIRECT_IO and TEXT_IO, the range of values for types COUNT
and POSITIVE__COUNT are as follows:

COUNT 0 .. 2147483647 - 2%%31 -
POSITIVE_COUNT 1 .. 2147483647 -- 2**31 - 1
For the package TEXT _IO, the range cf values for the type FIELD is as follows:

FIELD 0 .. 255 -- 2**8 - 1

9.2 Floating Point Type Attributes
FLOAT LONG_FLOAT

DIGITS 6 15

34 Alsys 286 DOS Ada Compiler. Appendix F. Version 4.2




MANTISSA 21 51

EMAX 8 204

EPSILON 9.53674E-07 8.88178E-16
LARGE 1.93428E+25 2.57110E+61
SAFE_EMAX 125 1021
SAFE_SMALL 1.17549€-38 2.22507€-308
SAFE_LARGE 4.25353€+37 2.24712E+307
FIRST -3.40282€+38 -1.79769€+308
LAST 3.40282e+38 1.79769€+308
MACHINE_RADIX 2 2

MACHINE _EMAX 128 1024
MACHINE_EMIN =125 <1021
MACHINE_ROUNDS true true
MACHINE_OVERFLOWS false false

SI1ZE 32 &4

9.3 Attributes of Type DURATION

DURATION'DELTA

OURATION*SMALL

DURATION'FIRST

DURATION *LAST

OURATION *LARGE

0.001

0.0009765625 (= 2**(-10))

~2097152.0

2097151.999

same 3as DURATION'LAST

10 Other Implementation-Dependent Characteristics

10.1 Use of the Floating-Point Coprocessor (80287)

Appendix F, Implementation-Dependent Characteristics




The Alsys 286 DOS Ada Compiler generates instructions to use the floating point copro-
cessor for all floating point operations (but, of course, not for operations involving only
universal__real).

A floating point coprocessor, 80287, is required for the execution of programs that use
arithmetic on floating point values. The coprocessor is needed if the FLOAT_IO or
FIXED_ IO packages of TEXT_IO are used.

The Runtime Executive will detect the absence of the floating point coprocessor if it is
required by a program and will raise NUMERIC_ERROR.

10.2 Characteristics of the Heap

UNCHECKED_DEALLOCATION is implemented for all Ada access objects except
access objects to tasks. Use of UNCHECKED_DEALLOCATICN on a task object will
lead to unpredictable results.

All objects whose visibility is linked to a subprogram, task body, or block have their
storage reclaimed at exit.

The maximum size of the heap is limited only by available memory. This includes the
amount of physical memory (RAM) and the amount of virtual memory (hard disk swap
space).

All objects created by allocators go into the heap. Also, portions of the Runtime Execu-
tive representation of task objects, including the task stacks, are allocated in the heap.
10.3 Characteristics of Tasks

The default task stack size is 1K bytes (32K bytes for the environment task), but by
using the Binder option STACK.TASK the size for all task stacks in a program may be
set to a size from 1K bytes to 64K bytes.

Normal priority rules are followed for preemption, where PRIORITY values are in the
range 1 .. 10. A task with undefined priority (no pragma PRIORITY) is considered to
be lower than priority 1.

The maximum number of active tasks is restricted only by memory usage.

The accepter of a rendezvous executes the accept body code in its own stack. Ren-
dezvous with an empty accept body (for synchronization) does not cause a context

switch.

The main program waits for completion of all tasks dependent upon library packages
before terminating.

Abnormal completion of an aborted task takes place immediately, except when the ab-
normal task is the caller of an entry that is engaged in a rendezvous, or if it is in the

36 Alsys 286 DOS Ada Compiler, Appendix F, Version 4.2




process of activating some tasks. Any such task becomes abnormally completed as soon
as the state in question is exited.

The message

GLOBAL BLOCKING SITUATION DETECTED
is printed to STANDARD_OUTPUT when theRuntime Executivedetects that no further
progress is possible for any task in the program. The execution of the program is then
abandoned.
10.4 Definition of a Main Subprogram
A library unit can be used as 2 main subprogram if and only if it is a procedure that is

not generic and that has no formal parameters.

10.5 Ordering of Compilation Units
The Alsys 286 DOS Ada Compi.ler imposes no additional ordering constraints on com-
pilations beyond those required by the language.

11 Limitations

11.1 Compiler Limitations
« The maximum identifier length is 255 characters.
s The maximum line length is 255 characters.

s The maximum number of unique identifiers per compilation unit is 2500.

11.2 Hardware Related Limitations

« The maximum size of the generated code for a single compilation unit is
65535 bytes.

» The maximum size of a single array or record object is 65522 bytes. The
‘maximum size of a static record is 4096 bytes. *

s The maximum size of a single stack frame is 32766 bytes, including the data
for inner package subunits unnested to the parent frame.

s The maximum amount of data in the global data area is 65535 bytes, in-

cluding compiler generated data that goes into the GDA (about 8 bytes per
compilation unit plus 4 bytes per externally visible subprogram).

Appendix F, Implementation-Dependent Characteristics 37




38

s The maximum amount of data in the heap is limited only by available mem-
ory, real and virtual.

Alsys 286 DOS Ada Compiler. Appendix F. Version 4.2




286 DOS conventions 31
286 DOS errors 31

286 DOS files 30

286 DOS special file 30
80287 36

Abnormal completion 36
Aborted task 36

Access protection 33

Allocators 36

APPEND 31

Application Developer’s Guide 2
Array objects 29

Array subtype 4

Array type 4
ASSIGN_TO_ADDRESS 8
Attributes of type DURATION 35

Binder 36
BUFFER_SIZE 31
Buffered files 32
Buffers

flushing 33

Characteristics of tasks 36
Column numbers 32
Compiler limitations 37
maximum identifier length 37
maximum line length 37
maximum number of compilation
units 37
maximum number of unique
identifiers 37
Constrained types
I/Oon 32
Control Z 33
COUNT 34
CREATE 31, 32

Device name 30
DEVICE_ERROR 31
DIGITS 34

Direct files 32
DIRECT_IO 30, 32, 34
Disk full 31

DOS Linker 3

Index

INDEX

Drive not ready 31
DURATION'DELTA 35
DURATION'FIRST 35
DURATION'LARGE 35
DURATION'LAST 35
DURATION’SMALL 35

EMAX 35
Empty accept body 36
END_ERROR 33
END_OF_ FILE 33
END_OF_PAGE 33
EPSILON 35
Errors
disk full 31
drive not ready 31
hardware 31
unknown media 31

FETCH_FROM_ADDRESS 8
FIELD 34
File closing

explicit 33
File names 30
File terminator 32
FIRST 35
FIXED_IO 36
FLOAT_10 36
Floating point coprocessor 36
Floating point operations 36
Floating point type attributes 34
FORM parameter 31

GET 33

GET_LINE 33

GLOBAL BLOCKING SITUATION
DETECTED 37

Hardware errors 31
Hardware limitations
maximum amount of data in the
global data area 37
maximura data in the heap 38
maximum size of a single array or
record object 37

39




40

maximum size of a single stack frame
37
maximum size of the generated code
37
Hardware related limitations 37
Heap 36 ’

1/0O synchronization 34

IBM Macro Assembler 3
Implementation generated names 29
IN_MODE 34

Integer types 34

Intel object module format 3
INTERFACE 2,3
INTERFACE_NAME 2,3
Interfaced subprograms 30
Interleaved characters 34
I0_EXCEPTIONS 30, 3!

LARGE 35

LAST 35

Legal file names 30
Library unit 37
Limitations 37

Line numbers 32
Line terminator 32
LONG__INTEGER 34
LOW_LEVEL_IO 30

MACHINE_EMAX 35

MACHINE _EMIN 35

MACHINE_MANTISSA 35

MACHINE _OVERFLOWS 35

MACHINE_RADIX 35

MACHINE_ROUNDS 35

Main program 36

Main subprogram 37

MANTISSA 35

Maximum amount of data in the global
data area 37

Maximum data in the heap 38

Maximum identifier length 37

Maximum line length 37

Maximum number of compilation units
37

Maximum number of unique identifiers
37

Maximum size of a single array or
record object 37

Maximum size of a single stack frame
37

Maximum size of the generated code 37

NAME_ERROR 31
Non-blocking I/O 34
Number of active tasks 36
NUMERIC_ERROR 36

OPEN 32
Ordering of compilation units 37
OUT_MODE 34

P'IS_ARRAY 4

Page numbers 32

Page terminator 32
Parameter passing 1
POSITIVE_COUNT 32, 34
Pragma IMPROVE 4
Pragma INDENT 3
Pragma INTERFACE 2, 3
Pragma INTERFACE_NAME 2,3
Pragma PACK 4

Pragma PRIORITY 4, 36
Pragma SUPPRESS 4
Predefined packages 29
PRIORITY 4, 36

PUT 33

PUT_LINE 34

Record objects 29

Rendezvous 36

RESET 33, 34

Runtime Executive 1, 3, 32, 33, 36, 37

SAFE_EMAX 35
SAFE_LARGE 35
SAFE_SMALL 35

Sequential files 32
SEQUENTIAL_IO 30

Sharing of external files 34
SHORT_INTEGER 34

SIZE 35

STANDARD_INPUT 30, 32, 33
STANDARD_OUTPUT 30, 32, 33, 37
Storage reclamation at exit 36
Stream file 32

SUPPRESS 4

Synchronization of 1/O 34
SYSTEM 4 .

Task stack size 36
Task stacks 36

Alsys 286 DOS Ada Compiler. Appendix F, Version 4.2




Tasking issues 34
Tasks

characteristics of 36
Text file

buffered 32
Text files 32
TEXT_IO 30, 34
TRUNCATE 31

Unchecked conversions 30
UNCHECKED_DEALLOCATION 36
Universal_real 36

Unknown media 31

USE_ERROR 32

Index

41




